Реферат: Углеродные нанотрубки
Контуром в графе называется замкнутая цепочка ребер, объединение которых представляет собой линию, гомеоморфную окружности.
Деревом называется связный граф, не содержащий ни одного контура.
Индекс точки называется число дуг, сходящихся в данной точке.
Также следует доказать следующую теорему:
Для любого дерева, имеющего В вершин и Р ребер, справедливо соотношение
В-Р=1. (2)
Для доказательства проведем индукцию по числу ребер Р. При Р=1 (дерево имеет одно ребро и две вершины) соотношение (2) справедливо. Предположим, что для любого дерева, имеющего n ребер, соотношение (2) уже доказано, и пусть G - дерево, имеющее n+1 ребро. Так как граф G связен, то его можно получить из некоторого связного графа G` добавлением одного ребра r.
Действительно, любой связный граф может быть получен следующим образом: мы берем одно ребро, затем присоединяем к нему еще одно ребро так, чтобы снова получился связный граф, затем присоединяем еще одно ребро (так, чтобы снова получился связный граф) и т.д. Это возможно, если удастся его вычертить «одним росчерком». А это, в свою очередь, возможно, если разрешить «проходить» каждое ребро ровно два раза.
* * *
Докажем, что любой связный граф можно вычертить «одним росчерком», если разрешить проходить каждое ребро точно два раза.
Если проходить граф описанным выше способом, то его можно сопоставить с графом, у которого приходится по два ребра на каждое ребро исходного графа, т.е. индекс каждой вершины в два раза больше, чем у исходного. Полученный граф имеет вершины с четными индексами, а значит этот граф является уникурсальным (его можно «нарисовать одним росчерком»).
* * *
Граф G` содержит n ребер и тоже не содержит контуров, т.е. является деревом. По предположению индукции для дерева G` соотношение (2) справедливо, и потому в G` имеется n+1 вершина. Заметим теперь, что только один конец добавляемого ребра r является вершиной графа G` (в противном случае, взяв в G` простую цепочку, соединяющую a и b, и добавив к этой цепочке ребро r, мы получили бы контур в графе G). Следовательно, при добавлении ребра r в графе G появляется одно новое ребро и одна новая вершина. Иначе говоря, граф G имеет n+2 вершины и n+1 ребро, и потому соотношение (2) для него справедливо. Проведенная индукция доказывает равенство (2) для любого дерева.
Теперь можно приступить к доказательству теоремы Эйлера. Для ее доказательства выделим из графа G максимальное его дерево G* , обозначим за k - число «перемычек» (т.е. ребер графа G, не содержащихся в G* ). Т.к. граф G* является деревом, то он не содержит ни одного контура, а, следовательно, он определяет на сфере лишь одну область (грань), и потому для него соотношение (1) справедливо. Далее, добавляя одну «перемычку», число ребер увеличивается на единицу, число вершин остается прежним, т.к. G* - максимальное дерево, т.е. оно содержит все вершины графа G; число граней увеличится на единицу за счет разбиения одной грани на две. Отсюда видно, что добавление одной «перемычки» не меняет соотношения (1). Значит и добавление k перемычек его не изменит. Т.е. граф G удовлетворяет соотношению (1).
Из теоремы Эйлера можно получить несколько интересных следствий.
Обозначим через n3 число треугольных граней выпуклого многогранника, через n4 - число его четырехугольных граней и т.д. Тогда соотношение один можно переписать так:
В=2+Р-(n3 +n4 +n5 +...). (3)
Т.к. каждое из ребер «принадлежит» ровно двум граням, то можно записать следующую формулу:
Р= (4)
В каждой вершине же сходится минимум три грани, т.е. каждой грани «принадлежит» максимум вершин, отсюда вытекает неравенство:
(5)
Объединяя (3), (4) и (5), получим
Умножая полученное на 6 и приводя подобные, получим:
причем равенство возможно только в том случае, когда в вершине сходятся три грани. В нашем случае, для идеальных фулеренов и для нанотрубок, запаянных с обоих концов это выполнено. Отсюда видно, что в состав них может входить ровно 12 пятиугольников.
Вторым следствием теоремы Эйлера является так называемая эйлерова характеристика поверхности.
Пусть Q — поверхность, которая допускает разбиение на многоугольники; это означает, что на поверхности можно «нарисовать» граф, разбивающий ее на конечное число кусков, гомеоморфных кругу. Обозначим число вершин и ребер графа через В и Р, а число многоугольников, на которые Q разбивается этим графом,— через Г. Число
X (Q) = В - Р + Г (6)
называется эйлеровой характеристикой поверхности Q. Строго говоря, число (6) определяется не самой поверхностью Q, а выбором ее разбиения на многоугольники. Однако теорема Эйлера показывает, что для поверхности Q, гомеоморфной сфере, эйлерова характеристика не зависит от выбора разбиения на многоугольники: Х(Q)=2. Докажем, что и для любой поверхности Q ее эйлерова характеристика Х(Q) не зависит от выбора разбиения на многоугольники, а определяется самой поверхностью.
В самом деле, пусть на, поверхности Q «нарисованы» два графа G1 , G2 , каждый из которых задает разбиение на многоугольники. Числа вершин, ребер и граней разбиения, определяемого графом G1 , обозначим через B1 , Р1 , Г1 , а соответствующие числа для разбиения, определяемого графом G2 ,— через В2 , Р2 , Г2 . Вообще говоря, графы G1 и G2 могут пересекаться в бесконечном числе точек. Однако, «пошевелив» граф G1 , мы сможем добиться того, чтобы G1 и G2 пересекались лишь в конечном числе точек.
Далее, если граф G1 G2 несвязен, то, «пошевелив» графы G1 , G2 , можно добиться того, чтобы они имели общие точки и, следовательно, их объединение было связным. Итак, мы можем предполагать, что графы G1 и G2 пересекаются лишь в конечном числе точек и имеют связное объединение G1 G2 . Считая новыми вершинами все точки пересечения графов G1 и G2 , а также все вершины этих графов, мы найдем, что G1 G2 является конечным связным графом (его ребрами являются куски ребер графов G1 и G2 , на которые они разбиваются вершинами графа G1 G2 ).
Обозначим через В и Р число вершин и ребер графа G1 G2 , a через Г — число граней, на которые он разбивает поверхность Q. Идея состоит в том, чтобы доказать равенства
(7)
из которых и будет следовать, что B1 -P1 +Г1 =B2 -P2 +Г2 . Оба равенства (7) доказываются одинаково; докажем первое.
Пусть М - некоторый многоугольник («грань»), определяемый графом G1 . Обозначим число вершин и ребер графа G1 G2 , расположенных внутри М (не на контуре), через В' и Р', а число вершин (а значит, и ребер) этого графа, расположенных на контуре многоугольника М, через q. Далее, число граней, определяемых графом G1 G2 и содержащихся в М, обозначим через Г'. На рис. 4 имеем В'=4, Р'=12, Г'=9, q=15.
Вырежем теперь многоугольник М (вместе с имеющейся на нем частью графа G1 G2 ) из поверхности Q. Так как М гомеоморфен кругу и, значит, полусфере, то его можно второй («нижней») полусферой дополнить до поверхности, гомеоморфной сфере (рис. 5). На этой сфере расположен связный граф, имеющий В'+q вершин, Р'+q ребер и определяющий Г'+1 граней (Г' граней содержится в М и еще одной гранью является нижняя полусфера). Следовательно, согласно (1), (В'+q)- (Р'+q)+(Г'+1)=2, т. е.
В'-Р'+Г=1. (8)
Если теперь (возвращаясь к поверхности Q, на которой начерчен граф G1 G2 ) мы выбросим из графа G1 G его часть, расположенную внутри М, то получится новый граф, для которого, однако, число В-Р+Г останется таким же, как и для графа G1 G2 . В самом деле, вместо В' вершин, Р' ребер и Г' граней, имевшихся внутри М, мы теперь будем иметь 0 вершин, 0 ребер и одну грань (сам многоугольник М), т. е. число В'-Р'+Г' заменится на 0-0+1, а это, согласно (8), ничего не меняет.