Реферат: Uranium enrichment

2.2 Gas Centrifuge

Gas centrifuges are the most commonly used technology today for enriching uranium. The technology was considered in the U.S. during the Manhattan Project, but gaseous diffusion and electromagnetic separation were pursued instead for full scale production. The centrifuge was later developed in Russia by a team lead by Austrian and German scientists captured during the Second World War. The head of the experimentation group in Russia was eventually released and took the centrifuge technology first to the United States and then to Europe where he sought to develop its use in enriching commercial nuclear fuel.

The centrifuge is a common technology used routinely in a variety of applications such as separating blood plasma from the heavier red blood cells. In the enrichment process, uranium hexafluoride gas is fed into rapidly spinning cylinders. In order to achieve as much enrichment in each stage as possible, modern centrifuges can rotate at speeds approaching the speed of sound. It is this feature that makes the centrifuge process difficult to master, since the high rate of revolution requires that the centrifuge be sturdy, nearly perfectly balanced, and capable of operating in such a state for many years without maintenance. Inside the rotating centrifuge, the heavier molecules containing U-238 atoms move preferentially towards the outside of the cylinder, while the lighter molecules containing U-235 remain closer to the central axis. The gas in this cylinder is then made to circulate bottom to top driving the depleted uranium near the outer wall towards the top while the gas enriched in U-235 near the center is driven towards the bottom. These two streams (one enriched and one depleted) can then be extracted from the centrifuge and fed to adjoining stages to form a cascade just as was done with the diffusers in the gas diffusion plants. A schematic diagram of such a centrifuge is shown in Figure 4 below.

Uranium enrichment

Figure 4: A schematic diagram of the cross section of a single gas centrifuge.

The rotating cylinder forces the heavier U-238 atoms towards the outside of the centrifuge while leaving the lighter U-235 more towards the middle. A bottom to top current allows the enriched and depleted streams to be separated and sent via pipes to subsequent stages. Like the gas diffusion process, it requires thousands to tens of thousands of centrifuge stages to enrich commercially or militarily significant quantities of uranium. In addition, like the gas diffusion plants, centrifuge plants require the use of special materials to prevent corrosion by the uranium hexafluoride, which can react with moisture to form a gas of highly corrosive hydrofluoric acid. One of the most important advantages to the gas centrifuge over the gas diffusion process, however, is that it requires 40 to 50 times less energy to achieve the same level of enrichment. The use of centrifuges also reduces the amount of waste heat generated in compressing the gaseous UF6 , and thus reduces the amount of coolants, such as Freon, that would be required. A bank of centrifuges from an enrichment plant in use in Europe is shown in Figure 5.

Uranium enrichment

Figure 5: A section of a typical cascade of centrifuge stages in a European uranium enrichment plant. The operative power of each centrifuge increases with the speed of revolution as well as with the height of the centrifuge while in a cascade each centrifuge also builds on the enrichment achieved in the previous stages.

Despite having a larger operative power in each stage compared to the gaseous diffusion process, the amount of uranium that can pass through each centrifuge stage in a given time is typically much smaller. Typical modern centrifuges can achieve approximately 2 to 4 SWU annually, and therefore in order to enrich enough HEU in one year to manufacture a nuclear weapon like that dropped on Hiroshima would require between three and seven thousand centrifuges. Such a facility would consume 580 to 816 thousand kWh of electricity, which could be supplied by less than a 100 kilowatt power plant. The use of modern weapon designs would reduce those numbers to just one to three thousand stages and 193 to 340 thousand kWh. More advanced centrifuge designs are expected to achieve up to ten times the enrichment per stage as current models which would further cut down on the number necessary for the clandestine production of HEU. The reported sale of older European based centrifuge technology to countries like Libya, Iran, and North Korea from the network run by A.Q. Khan, the former head of the Pakistani nuclear weapons program, highlights the concerns over the smaller size and power needs of the centrifuge enrichment process from a proliferation standpoint.

2.3 Electromagnetic Isotope Separation (EMIS)

The electromagnetic separation technique is a third type of uranium enrichment process that has been used in the past on a large scale. Developed during the Manhattan Project at Oak Ridge, Tennessee, the electromagnetic separation plant was used to both enrich natural uranium as well as to further enrich uranium that had been initially processed through the gaseous diffusion plant, which was also located at the Oak Ridge facility. The use of this type of facility, shown in Figure 6, was discontinued shortly after the war because it was found to be very expensive and inefficient to operate. Iraq did pursue this technique in the 1980s as part of their effort to produce HEU, because of its relative simplicity in construction, but they were only successful in producing small amounts of medium enriched uranium (just above 20 percent).

Uranium enrichment

Figure 6: The electromagnetic separations plant built at Oak Ridge, Tennessee during the Manhattan Project. These devices, also referred to as cauldrons, were used in enriching a part of the uranium for the bomb that was dropped by the United States on Hiroshima.

The electromagnetic separations process is based on the fact that a charged particle moving in a magnetic field will follow a curved path with the radius of that path dependent on the mass of the particle. The heavier particles will follow a wider circle than lighter ones assuming they have the same charge and are traveling at the same speed. In the enrichment process, uranium tetrachloride is ionized into a uranium plasma (i.e. the solid Ucl4 is heated to form a gas and then bombarded with electrons to produce free atoms of uranium that have lost an electron and are thus positively charged). The uranium ions are then accelerated and passed through a strong magnetic field. After traveling along half of a circle (see Figure 6) the beam is split into a region nearer the outside wall which is depleted and a region nearer the inside wall which is enriched in U-235. The large amounts of energy required in maintaining the strong magnetic fields as well as the low recovery rates of the uranium feed material and slower more inconvenient facility operation make this an unlikely choice for large scale enrichment plants, particularly in light of the highly developed gas centrifuge designs that are employed today.

2.4 Jet Nozzle / Aerodynamic Separation

The final type of uranium enrichment process that has been used on a large scale is aerodynamic separation. This technology was developed first in Germany and employed by the apartheid South African government in a facility which was supposedly built to supply low enriched uranium to their commercial nuclear power plants as well as some quantity of highly enriched uranium for a research reactor. In reality, the enrichment plant also supplied an estimated 400 kg of uranium enriched to greater than 80% for military use. In early 1990, President de Klerk ordered the end of all military nuclear activities and the destruction of all existing bombs. This was completed roughly a year and a half later, just after South Africa joined the NPT regime and just before submitting to inspections and safeguards by the International Atomic Energy Agency.

The aerodynamic isotope separation (which includes the jet nozzle and helicon processes) achieves enrichment in a manner similar to that employed with gas centrifuges in the sense that gas is forced along a curved path which moves the heavier molecules containing U-238 towards the outer wall while the lighter molecules remain closer to the inside track. In the jet nozzle plants, uranium hexafluoride gas is pressurized with either helium or hydrogen gas in order to increase the velocity of the gas stream and the mixture is then sent through a large number of small circular pipes which separate the inner enriched stream from the outer depleted stream. This process is one of the least economical enrichment techniques of those that have been pursued, given the technical difficulties in manufacturing the separation nozzles and the large energy requirements to compress the UF6 and carrier gas mixture. As with gaseous diffusion plants, there is a large amount of heat generated during operation of an aerodynamic separations plant which requires large amounts of coolants such as Freon.

2.5 Other Technologies

There are a number of other uranium enrichment technologies such as atomic vapor laser isotope separation (AVLIS), molecular laser isotope separation (MLIS), chemical reaction by isotope selective laser activation (CRISLA), and chemical and ion exchange enrichment that have been developed as well, but they are mostly still in the experimental or demonstration stage and have not yet been used to enrich commercial or military quantities of uranium. The AVLIS, CRISLA, and MLIS processes make use of the slight difference in atomic properties of U-235 and U-238 to allow powerful lasers to preferentially excite or ionize one isotope over the other. AVLIS makes use of uranium metal as a feed material and electric fields to separate the positively charged U-235 ions from the neutral U-238 atoms. MLIS and CRISLA on the other hand use uranium hexafluoride mixed with other process gases as a feed material and use two different lasers to excite and then chemically alter the uranium hexafluoride molecules containing U-235, which can then be separated from those molecules containing U-238 that remained unaffected by the lasers. AVLIS was pursued for commercial use by the U.S. Enrichment Corporation, but was abandoned in the late 1990s as being unprofitable while other countries have also abandoned all known AVLIS and MLIS production programs as well. The chemical and ion exchange enrichment processes were developed by the French and the Japanese. These techniques make use of the very slight differences in the reaction chemistry of the U-235 and U-238 atoms. Through the use of appropriate solvents, the uranium can be separated into an enriched section (contained in one solvent stream) and a depleted stream (contained in a different solvent that does not mix with the first in the same way that oil and water do not mix). This enrichment technique was also pursued by Iraq. Currently all known programs involving this technique have been closed since at least the early 1990s. All of these technologies have been demonstrated on the small scale and some, like AVLIS, have gone further along in the development process that would be necessary to scale up to production level facilities. This would be particularly true if the profitability of the plant was not an issue and it was only meant to enrich the reasonably modest quantities of HEU necessary for one to two bombs per year. Currently, however, the gas centrifuge appears to be the primary technology of choice for both future commercial enrichment as well as for potential nuclear weapons proliferation.


Reference List

1.David Albright, Frans Berkhout and William Walker. “Plutonium and Highly Enriched Uranium 1996”. Stockholm, 1997.

2.Laughter, Mark D. (2007) “Profile of World Uranium Enrichment Programs – 2007”. ORNL/TM – 2007/193

3.David Albright “Irag’s Programs toMake Highly Enriched Uranium and Plutonium for Nuclear Weapons Prior to the Gulf War”, 2002

4.Nuclear Engineering International. 2004 World Nuclear Industry Handbook. Wilmington Pub. Co., 2004

К-во Просмотров: 225
Бесплатно скачать Реферат: Uranium enrichment