Реферат: Усилители постоянного тока

В УПТ с МДМ входной сигнал постоянного напряжения Uвх (или тока) сначала преобразуется в пропорциональный ему сигнал переменного напряжения с помощью модулятора М, потом усиливается обычным усилителем Ус, а затем Демодулятором ДМ преобразуется в сигнал постоянного напряжения. Поскольку в усилителях переменного тока (например, с RC-связью) дрейф не передается от каскада к каскаду, то в МДМ усилителях реализуется минимальный дрейф нуля. Работу рассмат­риваемого усилителя удобно проиллюстриро­вать с помощью временных диаграмм на­пряжений (или токов) в основных точках схемы рис. 5, которые приведены на рис. 6. Преобразование постоянного Uвх в переменное осуществляется с частотой сигнала управления (модуляции) Uупр , обычно имеющего вид меандра. Для успешной работы УПТ с МДМ необходимо, чтобы частота сигнала управле­ния была, как минимум, на порядок выше максимальной частоты входного сигнала.

Из многообразия возможных вариантов построения модуляторных устройств наибольшее распространение получили транзисторные модуляторы (прерыватели или малотоковые переключатели). Рассмотрим работу простей­шего транзисторного модулятора, принципи­альная схема которого приведена на рис. 7.

Рис. 7

Здесь постоянное входное напряжение Uвх приложено между эмиттером и коллектором n-p-n транзистора, который с помощью трансформатора Тр управляется сигналом Uупр . Транзистор работает как ключ, т. е. он имеет два рабочих состояния: открыт (режим насыщения) и закрыт (режим отсечки). Если в режиме отсечки сопротивление транзистора велико, то в режиме насыщения оно близко к нулю. В результате ток через транзистор будет прерываться с частотой сигнала управления. Этот ток и является входным сигналом для усилителя переменного тока Ус. Связь устройств М и Ус обычно осуществляется через разделительный конденсатор. Схема на рис. 7 обращает на себя внимание тем, что в ней представлен транзистор в инверсном включении. Действительно, в транзисторных модуляторах получило распространение инверсное включение транзистора. Дело в том, что дрейф нуля в УПТ с МДМ в основном определяется дрейфом модулятора, который обусловлен нестабильностью остаточных параметров транзистора (тока и напряжения). Известно, что транзистор в инверсном включений имеет существенно меньшие остаточные параметры, чем в прямом включении. Это преимущество инверсного включения транзистора особенно ярко проявляется в значении остаточного напряжения. Напомним, что остаточный ток планарного транзистора чрезвычайно мал и для прямого включения (десятые или сотые доли наноампер), поэтому использование инверсного включения имеет смысл именно для уменьшения остаточного напряжения.

С помощью формул Эберса-Молла можно получить расчетные отношения для остаточного напряжения прямого U ост и инверсного U ост I включения транзистора при токах коллектора, близких к нулю:

Из (1) следует, что U ост I < U ост , поскольку , т. е. при малых токах коллектора инверсное включение транзистора лучше подходит для использования в модуляторах. Современные транзисторы при и оптимальном токе базы имеют .

Для качественных УПТ эту величину не всегда можно считать удовлетворительной. Меньшего остаточного напряжения можно достичь с помощью компенсированного модулятора (ключа) на двух инверсно включенных транзисторах, принципиальная схема которого приведена на рис. 8. Здесь транзисторы включены встречно, и поэтому их остаточные параметры должны компенсировать друг друга. Так, для остаточного напряжения рассматриваемого модулятора U остК можно записать:

U остК = U ост1 - U ост2 (2)

где U ост1 , U ост2 остаточные напряжения транзисторов Т1 и Т2 соответственно. Из (2) следует, что снижения U остК , а следовательно, и дрейфа всего УПТ можно достичь за счет того, что U ост1 U ост2 . Минимальный разброс параметров транзисторов можно получить при их изготовлении на одной подложке в едином технологическом цикле. Такие модуляторные транзисторы, являющиеся простейшими ИС, и получили основное применение в современных УПТ с МДМ (например, ИС К101КТ1). Остаточное напряжение в них обычно не превышает 100 мкВ.

Рис.8

С точки зрения современных требований к электронным устройствам рас­смотренные модуляторы имеют существенный недостаток, состоящий в присутствии электромагнитных трансформаторов, которые очень трудно изготовить в виде ИС. Отметим, что иногда трансформаторы в модуляторах удается заменить оптронами.

При работе с источниками входного сигнала с малыми U вх и большими внутренними сопротивлениями R г лучшие результаты получаются, когда модуля­тор выполняется на полевых транзисторах. Дело в том, что при токе стока, равном нулю, они имеют нулевое остаточное напряжение (чего нет в биполярных транзисторах). Это обусловлено тем, что проводимость цепи между стоком и истоком имеет, как правило, резистивный характер (сопротивление канала). Кроме того, большое R вх позволяет использовать управляющие сигналы малой мощности. Однако с возрастанием Uвх и уменьшением Rг преимущества таких модуляторов исчезают.

В качестве демодулятора ДМ можно использовать различные электронные Устройства. Простейшим демодулятором является обычный двухполупериодный или мостовой выпрямитель с фильтром на выходе. Более совершенным следует считать демодулятор, выполненный как фазочувствительный выпрямитель.

На рис. 9 приведена принципиальная схема одного из вариантов демодулято­ра — фазочувствительного выпрямителя. Она удобна тем, что ее основу составляет уже использованный в модуляторе модуляторный транзистор, состоящий из двух транзисторных структур в инверсном включении.

Рис. 9

На вход демодулятора поступает переменное напряжение U2 с усилителя. В базовые цепи транзисторов посредством трансформатора поступает общий управляющий сигнал Uупр . Транзисторы здесь открываются лишь при положитель­ных потенциалах баз, что происходит именно в момент поступления на вход информационного сигнала, усиленного с помощью усилителя Ус. Такой модулятор успешно функционирует в широком диапазоне рабочих сигналов. Емкость Сф выполняет функции сглаживающего фильтра. Достичь существенного улучшения электрических, эксплуатационных и массогабаритных показателей УПТ можно за счет их построения по балансным схемам.

4. ДИФФЕРЕНЦИАЛЬНЫЕ УСИЛИТЕЛИ

В настоящее время наибольшее распространение получили диф­ференциальные (параллельно-балансные или разностные) усилители. Такие усилители просто реализуются в виде монолитных ИС и широко выпускаются отечественной промышленностью: К118УД, КР198УТ1 и др. Их отличает высокая стабильность работы, малый дрейф нуля, большой коэффициент усиления дифференциального сигнала и большой коэффициент подавления синфазных помех.

На рис. 10 приведена принципиальная схема простейшего варианта дифференциального усилителя (ДУ). Любой ДУ выпол­няется по принципу сбалансированного моста, два плеча которого образованы резисторами R к1 и R к1 , а два других — транзисторами Т1 и Т2. Сопротивление нагрузки включается между коллекторами транзисторов, т. е. в диагональ моста. Сразу отметим, что резисторы R 01 и R 02 имеют небольшие величины, а часто и вообще отсутствуют. Можно считать, что резистор R Э подключен к эмиттерам транзисторов. Обращает на себя внимание то обстоятельство, что питание ДУ осуществляется от двух источников, напряжения которых равны (по модулю) друг другу. Таким образом, суммарное напряжение питания ДУ равно 2Е.

Рис. 10

Использование второго источника (—Е) позволяет снизить потенциалы эмиттеров Т1 и Т2 до потенциала общей шины. Это обстоятельство дает возможность подавать сигналы на входы ДУ без введения дополнительных компенсирующих напряжений (что требуется, например, для усилителя на рис. 3). При анализе работы ДУ принято выделять в нем два общих плеча, одно из которых состоит из транзистора Т1 и резистора Rк1 (и R01 ), второе —из транзистора Т2 и резистора Rк2 (и R02 ). Каждое общее плечо ДУ является каскадом ОЭ. Таким образом, можно заключить, что ДУ состоит из двух каскадов ОЭ. В общую цепь эмиттеров транзисторов включен резистор RЭ , которым и задается их общий ток. Для того чтобы ДУ мог качественно и надежно выполнять свои функции, а также в процессе длительной работы сохранить свои параметры и уникальные свойства, в реальных усилителях требуется выполнить два основных требования. Рассмотрим эти требования последовательно.

Первое требование состоит в симметрии обоих плеч ДУ. По нему необходимо обеспечить идентичность параметров каскадов ОЭ, образующих ДУ. При этом должны быть одинаковы параметры транзисторов Т1 и Т2, а также Rк1 = Rк2 (и R01 = R02 ). Если первое требование выполнено полностью, то больше ничего и не требуется для получения идеального ДУ. Действительно, при Uвх1 = Uвх2 = 0 достигается полный баланс моста, т. е. потенциалы коллекторов транзисторов Т1 и Т2 одинаковы, следовательно, напряжение на нагрузке равно нулю. При одинаковом дрейфе нуля в обоих каскадах, ОЭ (плечах ДУ) потенциалы коллекторов будут изменяться всегда одинаково, поэтому на выходе ДУ дрейф нуля будет от­сутствовать. За счет симметрии общих плеч ДУ будет обес­печиваться высокая стабильность при изменении напряжения питания, температуры, радиационного воздействия и т.д. Все это абсолютно верно, но возникает вопрос: «Как обеспечить симметрию общих плеч в ДУ?» На первый взгляд может показаться, что решить этот вопрос довольно просто. Действительно, всегда можно подобрать пары транзисторов и резисторов с весьма близкими параметрами.. Если собрать ДУ на таких дискретных элементах, то он может быть и продемонстрируете желаемый результат, но только в относительно небольшой промежуток времени. С течением времени параметры транзисто­ров и резисторов будут изменяться различным образом в соот­ветствии с законами своей собственной структуры, естественно, что на них различным образом будут влиять и внешние факторы, а следовательно, нарушится симметрия плеч со всеми вытека­ющими отсюда последствиями. В конечном счете можно за­ключить, что на дискретных элементах (изготовленных в разное время и в разных условиях) осуществить выполнение первого требования для ДУ практически невозможно. Это и обусловили тот факт, что прекрасные свойства ДУ не нашли должного использования в дискретной электронике. Приблизиться к выполнению первого основного требования для ДУ позволила микроэлектроника. Ясно, что симметрию общих плеч ДУ могут, обеспечив лишь идентичные элементы в которых все одинаково и которые были изготовлены в аб­солютно одинаковых условиях. Так, в монолитной ИС близко расположенные элементы действительно имеют почти одинаковые параметры. Следовательно, в монолитных ИС первое требование к ДУ почти выполнено. Это «почти» позволяет реализовать ДУ пусть не с идеальными, но все же с хорошими параметрами, но при непременном условии выполнения второго основного требования к ДУ.

Второе основное требование состоит в обеспечении глубокой ООС для синфазного сигнала. Синфазными называются одинаковые сигналы, т. е. сигналы, имеющие равные амплитуды, формы и фазы. Если на входах ДУ (рис. 10) присутствуют U вх1 = U вх2 , причем с совпадающими фазами, то можно говорить о поступлении на вход ДУ синфазного сигнала. Синфазные сигналы обычно обусловлены наличием помех, наводок и т. д. Часто они имеют большие амплитуды (значительно превышающие полезный сигнал) и являют­ся крайне нежелательными, вредными для работы любого усилителя.

Выполнить второе основное требование позволяет введение в ДУ резистора R Э , (или его электронного эквивалента). Если на вход ДУ поступает сигнал синфазной помехи, например, положительной полярности, то транзисторы Т1 и Т2 приотк­роются и токи их эмиттеров возрастут. В результате по резистору R Э будет протекать суммарное приращение этих токов, об­разующее на нем сигнал ООС. Нетрудно показать, что R Э образует в ДУ последовательную ООС по току. При этом будет наблюдаться уменьшение коэффициента усиления по на­пряжению для синфазного сигнала каскадов ОЭ, образующих общие плечи ДУ, K исф1 и Кисф2 . Поскольку коэффициент усиления ДУ для синфазного сигнала Кисф = Кисф1 - Кисф2 и за счет выполнения первого основного требования Кисф1 ≈ Кисф2 удается получить весьма малое значение Кисф , т. е. значительно подавить синфазную помеху.

Так как в монолитном ДУ с достаточным приближением можно выполнить оба основных требования, удается не только подавить синфазную внешнюю помеху, но и снизить влияние внутренних факторов, проявляющихся через изменения парамет­ров элементов схемы. Конечно, параметры составляющих каска­дов будут изменяться, но по весьма близким зависимостям, влияние которых будет дополнительно ослабляться наличием ООС.

Теперь рассмотрим работу ДУ для основного рабочего входно­го сигнала — дифференциального. Дифференциальными (противо­фазными) принято называть сигналы, имеющие равные амплиту­ды, но противоположные фазы. Будем считать, что входное напряжение подано между входами ДУ, т. е. на каждый вход поступает половина амплитудного значения входного сигнала, причем в противоположных фазах. Если U вх1 в рассматриваемый момент представляется положительной полуволной, то U вх2 — отрицательной.

За счет действия U вх1 транзистор Т1 приоткрывается, и ток его эмиттера получает положительное приращение ∆I Э1 , а за счет действия U вх2 транзистор Т2 закрывается, и ток его эмиттера получает отрицательное приращение, т.е. — ∆I Э2 . В ре­зультате приращение тока в цепи резистора R Э IR Э = ∆I Э1 - ∆I Э1. Если общие плечи ДУ идеально симметричны, то ∆IR Э = 0 и, следовательно, ООС для дифференциального сигнала отсутствует. Это обстоятельство позволяет получать от каждого каскада ОЭ в рассматриваемом усилителе, а следовательно, и от всего ДУ большое усиление. Отсюда происходит и название усилителя — дифференциальный. Так как для дифференциального входного сигнала в любой момент напряжения на коллекторах транзисто­ров Т1 и Т2 будут находиться в противофазе, то на нагрузке происходит выделение удвоенного выходного сигнала. Итак, резистор R Э , образует ООС только для синфазного сигнала.

Поскольку в реальных ДУ идеальную симметрию плеч осущест­вить нельзя, то R Э все же будет и для дифференциального сигнала создавать ООС, но незначительной глубины, причем чем лучше симметрия плеч, тем меньше ООС. Небольшую последовательную ООС по току задают в каскадах ДУ с по­мощью резисторов R01 и R02 . Как отмечалось выше, эти резисторы имеют небольшие номиналы (участки полупровод­никовой подложки), поэтому создаваемая ими ООС невелика и существенно не влияет на усилительные свойства ДУ.

Таким образом, при выполнении в ДУ двух основных требова­ний он обеспечивает стабильную работу с малым дрейфом нуля, с хорошим усилением дифференциального сигнала и со значитель­ным подавлением синфазной помехи. В зависимости от того, как подключены в ДУ источник входного сигнала и сопротивление нагрузки, следует различать схемы его включения.

5. СХЕМЫ ВКЛЮЧЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО УСИЛИТЕЛЯ

Можно выделить четыре схемы включения ДУ: симметричный вход и выход, симметричный вход и несимметричный выход, несимметричный вход и симметричный выход, несимметричный вход и выход. Рассмотрим их последовательно при воздействии рабочего входного сигнала.

При симметричном входе источник входного сигнала подключа­ется между входами ДУ (между базами транзисторов Т1 и Т2). При симметричном выходе сопротивление нагрузки подключается между выходами ДУ (между коллекторами транзисторов Т1 и Т2). Такое включение ДУ и было рассмотрено в предыдущем разделе. Теперь остановимся на определении параметров сим­метричного включения ДУ.

Рис. 12 Рис. 11

Проанализируем работу одного плеча, т. е. одного каскада ОЭ, входящего в ДУ. Для этого представим плечо ДУ в виде, изображенном на рис. 11. Здесь отсутствует резистор R Э , поскольку, он не участвует в работе на дифференциальном сигнале. Для входного сопротивления плеча ДУ R вхпл , можно записать:

(3)

К-во Просмотров: 604
Бесплатно скачать Реферат: Усилители постоянного тока