Реферат: Великие задачи древности

Несложно разделить любой угол с помощью циркуля и линейки на две, а некоторые углы — и на три равные части. Последняя операция называется трисекцией угла. Например, мы можем построить треть прямого угла, поделив пополам угол правильного треугольника, а проведя биссектрису в образовавшемся угле в 30°, получим угол величиной 15° — треть угла в 45°. Есть и другие углы, для которых трисекция выполнима. Наверное, подобные построения и вселили надежду открыть способ трисекции любого угла посредством циркуля и линейки. Эту задачу пытались решить ещё в V в. до н. э. в Греции.

На рис. 3 А0В — заданный угол, из точки В проведены прямая p = ВС, перпендикулярная ОА, и прямая l , параллельная ОА. Если теперь начертить прямую а = ОРQ так, чтобы её отрезок РQ, заключённый между р и l , равнялся 20В, то угол РОС составит треть данного угла. (Это можно доказать, пользуясь тем, что треугольники ОBD и ВDQ, где О — середина РQ, равнобедренные, и теоремой о внешнем угле треугольника.) Построить прямую а можно с помощью меченой линейки, т. е. линейки, на которой нанесены две метки на расстоянии 20В друг от друга.

Никомед с той же целью чертил свою конхоиду с полюсом О, основанием p и интервалом 20В; она пересекает l в искомой точке О.

В 1593 г. Франсуа Виет доказал, что любое кубическое уравнение можно свести либо к удвоению куба, либо к трисекции угла. Поскольку обе задачи решаются с помощью конхоиды, Ньютон предлагал включить эту кривую в число «стандартных».

Архимед придумал свой способ трисекции. На данный угол — это угол AОВ между радиусами окружности. С помощью меченой линейки проведём прямую через точку А так, чтобы её отрезок РQ между окружностью и продолжением прямой ВО равнялся радиусу окружности. Как и на рис. 3, здесь образуются равнобедренные треугольники ОАР и ОРQ, и легко доказать, что угол ОQA втрое меньше данного.

Конечно, и в этом случае, чтобы найти точку Р, можно использовать конхоиду Никомеда с полюсом А и основанием 0В, а точнее, её вторую, «внутреннюю» ветвь, возникающую при откладывании постоянного отрезка от основания к полюсу. Для каждого данного угла АОВ здесь приходится чертить новую конхоиду. Но можно обойтись и одной кривой для всех углов. Рассмотрим конхоиду с тем же полюсом А, но за её основание возьмём нашу окружность (рис. 5); иначе говоря, эту конхоиду опишут точки Q и Q1 , прямой АР, удалённые от Р на расстояние, равное радиусу, когда Р пробегает окружность. Получающаяся кривая известна как улитка Паскаля, названная так в честь Этьена Паскаля, отца философа и математика Блеза Паскаля. Сравнивая рис. 4 и 5, видим, что если на рис. 5 прямая ОB проведена под заданным углом к ОА, оси симметрии улитки, то угол OQA равен его трети.

Гиппий Элидский (около 420 г. до н. э.) для трисекции угла использовал кривую, впоследствии названную квадратрисой Динострата, который позже использовал её для решения квадратуры круга.

Квадратриса получается следующим образом. Пусть дана окружность радиуса а . Начнем вращать радиус ОА с угловой скоростью p /2 вокруг точки О - центра окружностии одновременно равномерно перемещать влево со скоростью а вертикальную прямую от точки А к точке С. Точка М их пересечения и будет описывать квадратрису. Если взять за оси координат прямую ОА и прямую 0В, то в момент времени t точка М будет иметь координаты

a(1-t) и a(1-t) tg

При стремлении t к 1 точка М стремится, к точке Р, при этом абсцисса точки М стремится к нулю, а у ординаты один множитель стремится к нулю, а другой - к бесконечности. Их произведение будет стремиться к числу 2а/p , поэтому длина отрезка ОР равна 2a/p. Следовательно, имеет место соотношение АС/ОР= p .

Пусть теперь дана окружность радиуса г. Тогда имеем соотношение 2p r /2r = АС/ОР, в котором известны АС, ОР и 2r-диаметр данной окружности. По ним мы можем построить отрезок, равный 2r- длине окружности, это будет четвертый пропорциональный отрезок к известным трем.

Французский математик П. Ванцель в 1837 г. первым строго доказал, что невозможно осуществить трисекцию циркулем и линейкой. Пусть b = a/3. По известной формуле, соs a = = 4 соs3 b - 3 соs b. Тогда для величины х = 2 сов b получается уравнение x 33x - а = 0, где а = 2 соs a . Геометрическая задача трисекции данного угла а циркулем и линейкой разрешима тогда и только тогда, когда полученное алгебраическое уравнение разрешимо в квадратных радикалах. Возьмём, например, a = 60°. Тогда уравнение примет вид х3 3x - 1 = 0. Оно неразрешимо в квадратных радикалах, а потому и трисекция с помощью циркуля и линейки в данном случае невозможна. Тем более она невозможна в общем случае. Интересно, что вообще для углов вида Зб0°/n с целым п трисекцию удаётся осуществить тогда и только тогда, когда n не делится на 3.

КВАДРАТУРА КРУГА

В задаче о квадратуре круга требуется построить циркулем и линейкой квадрат, равновеликий данному кругу. Вероятно, задача была известна уже за две тысячи лет до н. э. в Древнем Египте и Вавилоне. Но первая прямая ссылка на неё относится к V в. до н. э. По свидетельству древнегреческого историка Плутарха, философ Анаксагор, коротая время в тюрьме, пытался квадрировать круг, т. е. превратить его в равновеликий квадрат. Если считать радиус данного круга равным 1, то сторона искомого квадрата должна составить .

Надежды «квадратурщиков» подогревались существованием криволинейных фигур, квадрируемых циркулем и линейкой. Гиппократ Хиосский нашёл одну из таких фигур, известную как «луночки Гиппократа» (рис. 6). Он нашёл и другие луночки, допускающие квадратуру, что, конечно, не помогло ему решить саму исходную задачу. Заметим, что вопрос о том, какие луночки квадрируемы, оказался сложным и был полностью решён только в XX в., советским математиком Н. Г. Чеботарёвым.

Было предложено множество построений. В лучшем случае они давали приближённое значение p с достаточно хорошей точностью (см., например, рис. 7). Однако, в отличие от приведённых выше решений двух других знаменитых задач, эти построения были принципиально приближёнными. Впрочем, авторы таких построений часто не сомневались в их абсолютной точности и горячо отстаивали свои заблуждения. Один из самых громких споров на эту тему произошёл в Англии между двумя выдающимися учёными XVII в. — философом Томасом Гоббсом и математиком Джоном Валлисом. В весьма почтенном возрасте Гоббс опубликовал около десяти «решений» задачи о квадратуре круга.

Итак, задача о квадратуре круга оказалась наиболее сложной из трёх. Метод, использованный в двух других задачах, здесь не подошёл, так как число p имеет совершенно другую природу, чем или корни уравнений, к которым сводится трисекция. Только в 1882 г. Фердинанд Линдеман доказал, что число p трансцендентно, т. е. не является корнем никакого многочлена с целыми коэффициентами. Значит, оно и не квадратично-иррационально, поскольку в противном случае было бы корнем какого-либо многочлена. Так Линдеман наконец поставил точку в проблеме разрешимости посредством циркуля и линейки последней из трёх классических задач древности.

Список литературы

Энциклопедия по математике «Аванта+» (М. Аксенова, Г. Храмов).

Энциклопедический словарь юного математика (А. Симоненко).

Прикладная алгебра ( М. Поздняк, Ф. Груздь).

К-во Просмотров: 389
Бесплатно скачать Реферат: Великие задачи древности