Реферат: Великие законы сохранения
Моментом импульса материальной точки (частицы) относительно точки О называется векторная величина
(12)
где r - радиус-вектор, определяющий положение частицы относительно точки О, а p=mV – импульс частицы. Модуль этой величины, равный rpsina, можно представить в виде произведения плеча импульса на модуль вектора p:
L= p.
- Частица движется вдоль прямолинейной траектории (рис.2). Модуль момента импульса L=mV может изменяться только за счет изменения модуля скорости.
L=mVr
и так же, как в предыдущем случае, может изменяться только за счет изменения модуля скорости. Несмотря на непрерывное изменение направления вектора p, направление вектора L остается постоянным.
Проекция вектора L на произвольную ось z, проходящую через точку О, называется моментом импульса частицы относительно этой оси :
.
M=[rF]
Называется моментом силы F относительно точки О, из которой проводится радиус-вектор r точки приложения силы. Модуль момента силы можно представить в виде
M=rFsina= F,
где =sina - плечо силы относительно точки О (т.е. длина перпендикуляра, опущенного из точки О на прямую, вдоль которой действует сила).
Проекция вектора M на некоторую ось z, проходящую через точку О, относительно которой определен M, называется моментом силы относительно этой оси:
.
Согласно второму закону Ньютона - результирующей сил, действующих на частицу; по определению . Поэтому можно написать, что
Второе слагаемое является векторным произведением коллинеарных векторов и поэтому равно нулю. Первое слагаемое представляет собой момент силы F относительно той же точки, относительно которой взят момент импульса L. Следовательно, мы приходим к соотношению
, (14)
согласно которому скорость изменения момента импульса со временем равна суммарному моменту сил, действующих на частицу.
Спроектировав векторы, фигурирующие в уравнении (14), на произвольную ось z, проходящую через точку О, получим соотношение
.
Таким образом, производная по времени от момента импульса относительно оси равна моменту относительно той же оси сил, действующих на частицу.
Рассмотрим систему частиц, на которые действуют как внутренние, так и внешние силы. Моментом импульса L системы относительно точки О называется сумма моментов импульса Li отдельных частиц:
,
где - момент внутренних сил, а - момент внешних сил, действующих на i-ю частицу. Подстановка этих равенств в (15) приводит к соотношению:
.
Каждое из слагаемых в этих суммах представляет собой сумму моментов сил, действующих на i-ю частицу. Суммирование осуществляется по частицам. Если перейти к суммированию по отдельным силам, независимо от того, к какой из частиц они приложены, индекс i в суммах можно опустить.
Согласно (13)суммарный момент внутренних сил равен нулю. Поэтому получаем окончательно, что
(16)
Формула (16) сходна с формулой (1). Из сравнения этих формул заключаем, что подобно тому, как производная по времени от импульса системы равна сумме моментов внешних сил.
Спроектировав векторы, фигурирующие в формуле (16) на произвольную ось z, проходящую через точку О, придем к уравнению
(17)
Если система замкнута (т.е. внешних сил нет), правая часть равенства (16) равна нулю и, следовательно, вектор L не изменяется со временем. Отсюда вытекает закон сохранения момента импульса , который гласит, что момент импульса замкнутой системы материальных точек остается постоянным . Разумеется, будет оставаться постоянным и момент импульса замкнутой системы относительно любой оси, проходящей через точку О.
Момент импульса сохраняется и для незамкнутой системы, если сумма моментов внешних сил равна нулю. Согласно (17) сохраняется момент импульса системы относительно оси z при условии, что сумма моментов внешних сил относительно этой оси равна нулю.
В основе закона сохранения момента импульса лежит изотропия пространства, т.е. одинаковость свойств пространства по всем направлениям. Поворот замкнутой системы частиц без изменения их взаимного расположения (конфигурации) и относительных скоростей не изменяет механических свойств системы. Движение частиц друг относительно друга после поворота будет таким же, каким оно было бы, если бы поворот не был осуществлен.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
- Справочник по элементарной физике, Ширкевич М.Г., Москва 1975;
- Курс общей физики, Т.1, Савельев И.В., Москва 1977;
- Курс физики, Т.1,2, Савельев И.В., Москва 1989;
- Элементарный учебник физики, Т.1, Ландсберг Г.С., Москва 1958.