Реферат: Витамин РР и методы определения витаминов
Никотиновая кислота довольно легко выделяется из большинства природных продуктов. Она представляет собой белое игольчатое, кристаллическое вещество без запаха, кисловатого вкуса с точкой плавления 234-237°. Молекулярный вес ее 123,11. Один грамм никотиновой кислоты растворим в 60 мл воды и 80 мл этилового спирта при 25°. Она нерастворима в эфире, но растворима в водных растворах гидроксидов и карбонатов щелочей. Никотиновая кислота не гигроскопична, очень стойкая в сухом виде. Растворы ее могут переносить автоклавирование при 120° в течение 20 минут без разрушения. Она хорошо переносит кипячение в 1 н. и 2 н. растворах минеральных кислот и щелочей. Никотиновая кислота имеет спектр поглощения в ультрафиолетовых лучах с максимумом при 260-260,5 нм. Наблюдается прямолинейная зависимость между коэффициентами поглощения никотиновой кислоты и ее концентрацией.
По химическому строению никотиновая кислота является бетапиридинкарбоновой или пиридин-3-карбоксиловой кислотой.
Никотинамид представляет собой белый кристаллический порошок без запаха, горько-соленого вкуса. Он плавится при 129-131°, имеет молекулярный вес 122,12. Один грамм растворяется в 1 мл воды и в 1,5 мл 95% этилового спирта. Он растворим в ацетоне, амиловом спирте, этиленгликоле, хлороформе, бутаноле, немного растворим в эфире и бензине. Никотинамид резко повышает растворимость рибофлавина. В сухом виде при температуре ниже 50° очень стоек. В водном растворе может быть автоклавирован при 120° в течение 20 минут без видимой потери активности. Под влиянием кислот и щелочей он превращается в никотиновую кислоту.
Никотинамид имеет абсорбционный максимум при 260-261,5 нм. По химическому строению он является амидом бетапиридинкарбоновой или пири-дин-3-карбоксиловой кислоты.
Никотиновая кислота может быть получена из никотина, из бетапиколина, хинолина, пиридина и др.
Никотинамид может быть получен из никотиновой кислоты, ее эфиров и из 3-циано-пиридина. Одним из важнейших аналогов никотиновой кислоты является 3-ацетилпиридин, который в опытах на животных используется для воспроизведения недостаточности никотиновой кислоты, как и другой аналог - 6-аминоникотинамид. 3-Ацетилпиридин почти не оказывает действия на здоровых собак, так как только малая часть его превращается в организме в никотиновую кислоту, а большая часть выделяется с мочой в виде никотината и других соединений. При применении его в опытах на мышах в дозе 3 мг в день через 3-4 дня появлялись симптомы недостаточности никотиновой кислоты.
Токсичность 3-ацетилпиридина LD50 для мышей составляет 300- 350 мг/кг, а для крыс - 80 мг/кг. Токсичность 6-аминоникотинамида (LD50 для мышей 35 мг/кг) значительно выше, чем у 3-ацетилпиридина. При дозе 2 мг/кг 50% животных погибали через 11 дней.
Гидразид изоникотиновой кислоты (изоникотинилгидразид, изониазид) угнетает рост микобактерий туберкулеза, которые теряют около 50% НАД при концентрации изониазида в среде 0,1 мкг/мл.Применяют в качестве лечебного средства при туберкулезе.
Никотиновая кислота и ее амид играют существенную роль в жизнедеятельности организма:они являются простетическими группами ферментов - кодегидразы I (дифосфопиридиннуклеотида-НАД)и кодегидразы II (трифосфопиридиннуклеотида - НАДФ), являющихся переносчиками водорода и осуществляющих окислительно-восстановительные процессы.
Кодегидраза II участвует также в переносе фосфата.Никотиновая кислота обладает не только противопелагрическими свойствами; она улучшает углеводный обмен, действует положительно при легких формах диабета, заболеваниях печени, сердца, язвенной болезни желудка и двенадцатиперстной кишки и энтероколитах (воспалении тонкой и толстой кишки), вяло заживающих ранах и язвах. Витамин РР входит в состав НАД или НАДФ, являющихся коферментами большого числа обратимо действующих в окислительно-восстановительных реакциях дегидрогеназ. Показано, что ряд дегидрогеназ использует только НАД и НАДФ (соответственно малатдегидрогеназа и глюкозо-6-фосфатдегидрогеназа), другие могут катализировать окислительно-восстановительные реакции в присутствии любого из них (например, глутаматдегидрогеназа). В процессе биологического окисления НАД и НАДФ выполняют роль промежуточных переносчиков электронов и протонов между окисляемым субстратом и флавиновыми ферментами.
Витамин оказывает также сосудорасширяющее действие.Никотиновая кислота обладает липопротеидемической активностью (снижает уровень липопротеидов в крови). В больших дозах (3-4 г в день) понижает содержание триглийцеридов и бета-липопротеидов в крови. У больных с гиперхолестеринемией (с повышенным содержанием холестерина в крови) под ее влиянием уменьшается соотношение холестерин/фосфолипиды в липопротеидах низкой плотности.
Назначают как специфическое средство для предупреждения и лечения пеллагры. Кроме того, применяют при желудочно-кишечных заболеваниях (особенно при гастрите) заболеваниях печени (острых и хронических гепатитах, циррозах), спазмах (резком сужении просвета) сосудов конечностей, почек, головного мозга, при невритах лицевого нерва (воспалении лицевого нерва), атеросклерозе, длительно незаживающих ранах и язвах, инфекционных и других заболеваниях.
Витамин РР оказывает положительное влияние на выделительную функцию желудка (повышает кислотность желудочного сока) и поджелудочной железы, регулирует двигательную функцию желудка, улучшает углеводный обмен, снижает содержание холестерина в крови, расширяет коронарные сосуды сердца и сосуды конечностей, положительно действует при заболеваниях печени, колитах, язвенной болезни, вяло заживающих ранах, язвах.
витамин организм никотиновый авитаминоз
Обмен витамина РР в организме
Судьба никотиновой кислоты, поступающей в организм, зависит от вида питания и содержащихся в нем продуктов. Как уже упоминалось выше, никотиновая кислота, находящаяся в ряде зерновых продуктов в форме сложного эфира - ниацитина, на 95-96% не усваивается организмом человека, собаки и крысы, тогда как ниацин, находящийся в животных и бобовых продуктах, усваивается ими целиком. Организм человека, собаки и свиньи не в состоянии синтезировать никотиновую кислоту в количествах, необходимых для покрытия потребности в ней организма, и поэтому постоянно нуждается в получении ее с пищей. Некоторые млекопитающие, например крыса, лошадь, корова и овца, могут синтезировать никотиновую кислоту.
Источником никотиновой кислоты является триптофан. Начиная с 1945 г. в ряде работ описаны отдельные этапы синтеза никотиновой кислоты из триптофана у млекопитающих. Существуют два пути эндогенного синтеза ниацина в организме животных: микробный синтез в кишечнике и биосинтез в тканях. Основное превращение L-триптофана идет по пути расщепления триптофан-пирролазой его пиррольного кольца с образованием формил-кинуренина, из которого образуются кинуренин и 3-оксикинуренин, являющиеся одними из главных продуктов диссимиляции триптофана в организме. 3-оксикинуренин далее превращается в 3-оксиантраниловую кислоту. После включения двух атомов кислорода образуются 2-акролеил-З-аминофумаровая кислота и хинолиновая кислота, являющаяся предшественником никотиновой кислоты. В результате ряда промежуточных реакций у всеядных животных и человека образуются никотиновая кислота и Nl-метилникотинамид.
При сбалансированном питании лишь незначительная часть триптофана выделяется из организма животных и человека с мочой в виде специфических продуктов его распада. При нагрузках триптофаном с мочой выделяются в значительных количествах такие продукты его обмена, как кинуренин, 3-оксикинуренин, кинуреновая и ксантуреновая кислоты. Участие витамина B6 в обмене триптофана у млекопитающих предполагалось в связи с обнаружением в моче при недостаточности витамина B6 ксантуреновой кислоты - одного из продуктов обмена триптофана. Кроме того, ряд авторов наблюдали при недостаточности витамина B6 у животных снижение концентрации НАД и НАДФ в эритроцитах крови и снижение выделения Nl-метилникотинамида с мочой.
Оказалось, что производное витамина В6 - пиридоксальфосфат является коферментом кинурениназы, участвующим в гидролитическом расщеплении кинуренина и 3-оксикинуренина. Нарушение кинурениназной реакции при недостаточности витамина В6 приводит к нарушению синтеза 3-оксиантраниловой кислоты и снижению образования никотиновой кислоты.
Никотиновая кислота, поступающая в организм человека и всеядных и пло-тоядных животных, переходит в никотинамид и затем метилируется в Nl-метилникотинамид, который частично окисляется в Nl-метил-2-пиридон-5-карбоксамид. От 40 до 50% принятой никотиновой кислоты выделяется в этой форме. У травоядных животных никотиновая кислота не переходит в амид и выделяется с мочой в свободном или связанном виде, а находящийся в пище этих животных никотинамид выделяется в виде никотиновой или ни-котинуровой кислот. Метилирование никотинамида происходит путем при-соединения метильной группы к азоту пиридинового кольца. Nl-метилникотинамид имеет адсорбционный максимум в ультрафиолетовых лучах 264,5 нм. Nl-метилникотинамид 6-пиридон - 260 и 290 нм.
Подсчет выделения с мочой метаболитов никотиновой кислоты у людей, получавших различные количества витамина РР и триптофана, показал, что в среднем от 55 до 60 мг триптофана, содержащегося в пище, эквивалентны 1 мг никотиновой кислоты.
Horwitt предложил называть 1 мг никотиновой кислоты, или 60 мг триптофана "ниациновым эквивалентом". Таким образом, в никотиновую кислоту превращается от 1,9 до 5% (в среднем 3,3%) триптофана.
Участие витамина РР в обмене веществ
Никотиновая кислота и никотинамид являются веществами, необходимыми для жизнедеятельности всех животных и растительных клеток. Они входят в состав коферментов НАД и НАДФ и вместе с апоферментами катализируют окислительно-восстановительные реакции клеточного обмена. Эта роль ни-котиновой кислоты установлена еще до того, как было открыто ее значение в качестве витамина PP. НАД был обнаружен еще в 1905 г., в 1933 г. было ус-тановлено его адениннуклеотидное строение, а в 1936 г. НАД в чистом виде был выделен из пивных дрожжей. Он представляет собой белый аморфный порошок, слабо растворимый в феноле и метаноле с соляной кислотой. В ультрафиолетовых лучах он имеет абсорбционный спектр 260 и 340 нм.
НАД представляет собой динуклеотид, состоящий из никотинамида, двух молекул рибозы, двух молекул фосфорной кислоты и аденина. НАДФ имеет сходное с НАД свойство взаимодействовать с водородом и тот же абсорбционный спектр. Он содержит одну молекулу никотинамида, две молекулы рибозы, одну молекулу аденина и три молекулы фосфорной кислоты, отличаясь от НАД наличием одного остатка фосфорной кислоты во втором положении аденозина.
НАД и НАДФ находятся во всех клетках организма животных и растений. Для примера представлена таблица их содержания в тканях крыс.
Ткани |
НАД+ НАД-Н2 в ммолях на 1 кг сырого веса | НАД-Н в % |
НАД+ НАД-Н2 К-во Просмотров: 629
Бесплатно скачать Реферат: Витамин РР и методы определения витаминов
|