Реферат: Властивості визначеного інтеграла

Дійсно

60. Визначений інтеграл від суми інтегрованих функцій дорівнює сумі визначених інтегралів від цих функцій:

(36)

Для довільного τ – розбиття маємо

Звідси, переходячи до границі при дістанемо формулу (36). Ця властивість має місце для довільного скінченого числа доданків.

Властивості 50 і 60 називають лінійністю визначеного інтервала.

70. Якщо всюди на відрізку [a;b] маємо , то

(37)

(збереження знака підінтегральної функції визначеним інтегралом).

Оскільки

то будь-яка інтегральна сума і її границя при , теж невід’ємна.

80. Якщо всюди на відрізку [a;b] маємо , то

(38)

(монотонність визначеного інтеграла).

Оскільки то з нерівності (37) маємо

Використовуючи властивість 40 , дістанемо нерівність (38).

Якщо то властивість 80 можна зобразити геометрично (7.7): площа криволінійної трапеції aA1B1b не менша площі криволінійної трапеції aA2B2b.

90. Якщо функція f(x) інтегрована на відрізку [a;b] (a<b), то

(39)

Застосовуючи формулу (38) до нерівності

дістаємо

Звідки й випливає нерівність (39).

К-во Просмотров: 194
Бесплатно скачать Реферат: Властивості визначеного інтеграла