Реферат: Внутренние силы и напряжения, возникающие в поперечных сечениях бруса при растяжении и сжатии

Эта величина называется относительным удлинением стержня.

Если бы в стержне (рис. 20) возникало неоднородное напряженное состояние, деформация в сечении А определялась бы путем предельного перехода к малому участку длиной dz и тогда

Заметим, что вследствие равномерного распределения напряжений по сечению удлинения для всех элементарных отрезков аЬ (рис. 20), взятых на участке, оказываются одинаковыми. Следовательно, если концы отрезков до нагружения образуют плоскость, ТО и после нагружения стержня они образуют плоскость, но смещенную вдоль оси стержня. Это положение может быть взято в основу толкования механизма растяжения и сжатия и трактуется как гипотеза плоских сечений (гипотеза Бернулли). Если эту гипотезу принять как основную, то тогда из нее, уже как следствие, вытекает высказанное ранее предположение о равномерности распределения напряжений в поперечном сечении.

В пределах малых удлинений для подавляющего большинства материалов справедлив закон Гука, который устанавливает прямую пропорциональность междунапряжениями и деформациями:

Величина Е представляет собой коэффициент пропорциональности, называемый модулем упругости первого рода. Модуль упругости является физической, константой материала и определяется путем эксперимента. Величина Е измеряется в тех же единицах, что и а, т. е. в кГ/см2. Для наиболее часто применяемых материалов модуль упругости имеет следующие значения в кГ/см2:

Закон Гука является приближенным. Для некоторых материалов, таких, как, например, сталь, он соблюдается с большой степенью точности в широких пределах изменения напряжений. В некоторых же случаях наблюдаются заметные отклонения от закона Гука. Например, для чугуна и некоторых строительных материалов даже при малых напряжениях закон Гука может быть принят только в грубом приближении. В тех случаях, когда закон Гука явно не соблюдается, деформацию задают в виде некоторой нелинейной функции от напряжения

с таким расчетом, чтобы эта функция отвечала кривой, полученной из испытания материала.

Вернемся к выражению (1.4) и заменим в нем о на , а е на Тогда получим

Абсолютное удлинение стержня на длине l будет равно

В том случае, когда стержень нагружен только по концам, нормальная сила N = Р не зависит от г. Если, кроме того, стержень имеет постоянные размеры поперечного сечения Р, то из выражения (1.5) получаем

При решении многих практических задач возникает необходимость наряду с удлинениями, обусловленными напряжением учитывать также удлинения, связанные с температурным воздействием. В этом случае пользуются способом наложения и деформацию е рассматривают как сумму силовой деформации и чисто температурной деформации:


где а — коэффициент температурного расширения материала.

Для однородного стержня, нагруженного по концам и равномерно нагретого, получаем, очевидно,

Таким образом, силовая и температурная деформации рассматриваются как независимые. Основанием к этому служит экспериментально установленный факт, что модуль упругости Е при умеренном нагреве слабо меняется с температурой, точно так же как и величина а практически не зависит от напряженияДля стали это имеет место до температуры порядка 300—400° С. При более высоких температурах необходимо учитывать зависимость

Рассмотрим примеры определения напряжений и перемещений в некоторых простейших случаях растяжения и сжатия.

Пример 1.1. Требуется выявить закон изменения нормальных сил, напряжений и перемещений по длине ступенчатого стержня, нагруженного на конце силой Р (рис. 21, а), определить числовые значения наибольшего напряжения и наибольшего перемещения, еслиМатериал — сталь,

Поскольку сила Р велика, собственный вес стержня не имеет значения.

Из условий равновесия любой отсеченной части стержня вытекает, что нормальная сила N в каждом сечении стержня численно равна внешней силе Р. Построим график изменения силы N вдоль оси стержня. Графики подобного рода называются в сопротивлении материалов эпюрами. Они Дают наглядное представление о законах изменения различных исследуемых величин. В данном случае э пюра нормальной силы представлена на рис. 21, б прямоугольником, посколькуНа рисунке эпюра N заштрихована линиями, которые проведены в направлении откладываемой на графике величины N. В данном случае значение силы N откладывается вверх, следовательно, штриховка проведена Вертикально.

К-во Просмотров: 259
Бесплатно скачать Реферат: Внутренние силы и напряжения, возникающие в поперечных сечениях бруса при растяжении и сжатии