Реферат: Вода, дарующая жизнь
Иногда вода замерзает и при плюсовой температуре. Такое явление наблюдается в трубопроводах и почвенных капиллярах. В трубопроводах вода может замерзнуть при температуре +20°С. Объясняется это присутствием в воде метана. Поскольку молекулы метана занимают примерно в 2 раза больший объем, чем молекулы воды, они «расталкивают» молекулы воды, увеличивают расстояние между ними, что приводит к понижению внутреннего давления и повышению температуры замерзания. В почвенной влаге подобную роль выполняют молекулы белка. За счет влияния белковых молекул температура замерзания воды в почвенных капиллярах может возрасти до +4,4°С.
Соленость воды зависит от концентрации растворенных в ней солей, поэтому в разных морях и океанах соленость воды неодинакова. Средняя соленость вод океана составляет 35%; соленость морской воды может изменяться от нуля вблизи мест впадения крупных рек до 40% в тропических морях. Вода для питья должна содержать менее 0,05% растворенных солей. Для полива растений в воде должно содержаться не более 0,25% солей, в противном случае растения погибнут.
Существующие в природе жидкости можно разделить на нормальные и ассоциированные. Нормальными называются те жидкости, у которых молекулы не объединяются в группы (ассоциации). Жидкости, не подчиняющиеся этому условию, называются ассоциированными. Вода принадлежит к числу ассоциированных жидкостей. Если бы вода была неассоциированной жидкостью, температура плавления льда в нормальных условиях была бы +1,43°С, а температура кипения воды 103°С. Как правило, теплоемкость жидкостей с температурой растет, но у воды с приближением к температуре +35°С теплоемкость после роста спадает до минимума, а затем снова постепенно растет. Происходит это из-за того, что при такой температуре разрушаются молекулярные связи. Чем проще молекулярная структура, тем меньше теплоемкость вещества. Температура наибольшей плотности воды понижается с увеличением давления и при давлении 150 атмосфер достигает 0,7°С. Это также объясняется изменением структуры молекулярных ассоциаций.
Схема образования связей в молекуле воды.
Среди существующих в природе жидкостей вода обладает наибольшей теплоемкостью. Это ее качество оказывает существенное влияние на климат. Основным терморегулятором климата являются воды океанов и морей: накапливая тепло летом, они отдают его зимой. Отсутствие водоемов на местности обычно приводит к образованию резко континентального климата. Благодаря влиянию океанов на значительной части Земного пара обеспечивается перевес осадков на суше над испарением, и организмы растений и животных получают нужное им для жизни, количество воды. Водная и воздушная оболочки Земного шара постоянно обмениваются углекислотой с горными породами, растительным и животным миром, что также способствует стабилизации климата.
При повышенной температуре водород реагирует со многими веществами, например он сгорает в атмосфере кислорода с образованием воды и выделением большого количества теплоты.
2Н2 + 02 = 2Н2 0.
Известно, что молекулы, находящиеся на поверхности жидкости, имеют избыток потенциальной энергии и поэтому стремятся втянуться внутрь так, что при том на поверхности остается незначительное количество молекул. За счет этого вдоль поверхности жидкости всегда действует сила, стремящаяся сократить поверхность. Это явление в физике получило название поверхностного натяжения жидкости.
Среди существующих в природе жидкостей поверхностное натяжение воды уступает только ртути. С поверхностным натяжением воды связано ее сильное смачивающее действие (способность «прилипать» к поверхности многих твердых тел). Кроме того, вода является универсальным растворителем. Теплота ее испарения выше теплоты испарения любых других жидкостей, а теплота кристаллизации уступает лишь аммиаку.
Молекула воды состоит из двух атомов водорода и одного атома кислорода. В составе обычной воды Н2О имеется небольшое количество тяжелой воды D2O и совсем незначительное количество сверхтяжелой воды Т,О. В молекулу тяжелой воды вместо обыкновенного водорода Н — протия входит его тяжелый изотоп D — дейтерий, в состав молекулы сверхтяжелой воды входит еще более тяжелый изотоп водорода Т — тритий. В природной воде на 1000 молекул Н,0 приходится две молекулы D2O и на одну молекулу Т,0 — 1019 молекул Н2О.
Тяжелая вода D2O бесцветна, не имеет ни запаха, ни вкуса и живыми организмами не усваивается. Температура ее замерзания 3,8°С, температура кипения 101,42°С и температура наибольшей плотности 11,6°С. По способности впитываться тяжелая вода близка к серной кислоте. Ее плотность на 10% больше плотности природной воды, а вязкость превышает вязкость природной воды на 20%. Растворимость солей в тяжелой воде примерно на 10% меньше, чем в обычной воде. Поскольку D2O испаряется медленнее легкой воды, в тропических морях и озерах ее больше, чем в водоемах полярных широт.
1.2 Химическая природа воды и ее память (структура, свойства, состав воды)
Вода представляет собой важнейшее химическое соединение, определяющее возможность существования жизни на Земле. Ежедневное потребление человеком питьевой воды составляет в среднем около 2 л, а общее потребление воды на душу населения в развитых странах составляет 150 - 300 л в день. Содержание воды в организме новорожденного составляет 97%, с возрастом снижаясь до 70 - 75%, в частности, в мозге содержится около 85% воды. При этом, несмотря на одинаковую молекулярную формулу Н2О, структура и физико-химические свойства содержащейся в живых системах воды существенно отличаются от аналогичных показателей воды, которую мы используем каждый день. Ярким примером этого служит тот факт, что вода внутри клеток животных и растений не замерзает при температурах до - 50°С и ниже (подробнее об этом в последующих разделах). Важнейшим свойством воды является ее необычайно высокая чувствительность к различным физико-химическим и энергоинформационным воздействиям за счет наличия низкоэнергетических водородных связей, способных перестроиться под действием разнообразных внешних воздействий, не требующих больших затрат энергии.
Таким образом, можно утверждать, что воздействие на воду непосредственно связано с влиянием на живые системы, в частности, на человеческий организм. На протяжении многих веков эти эффекты использовали и продолжают в настоящее время применять в различных оккультных, парапсихологических и магических методах, таких как лечение различных заболеваний "заряженной" водой, избавление от алкогольной зависимости, наведение порчи, приворот и т.д. Представляет большой интерес выяснение реальности подобного рода явлений, их механизма и связи со структурой и свойствами воды, а также влияния на воду и водные системы электромагнитных полей и других внешних факторов, не связанных непосредственно с изменением химического состава воды и водных растворов.
Питьевая вода из под крана сильна загрязнена пестицидами, гербицидами, нитратами, нитритами, тяжелыми металлами, полициклическими ароматическими углеводородами, причем на содержание этих веществ установлены предельно допустимые значения, которые не должны превышаться. Используемые для биологической и химической очистки вещества должны по возможности удаляться из воды водоснабжающим предприятием.
И хотя эти химические вещества отфильтровываются, в воде остаются их следы (информация), которые отрицательно воздействуют на организм, из чего каждому становится ясным, что все водные фильтры сами по себе недостаточны, так как они способны удалять только вредные химические твердые вещества, но не отрицательную информацию, носителем которой являются сами макромолекулы воды.
Свойства воды
Самым удивительным веществом в природе можно назвать простую и обычную воду. Она обладает такими свойствами, которые не характерны для любых других известных соединений кислорода с водородом. Например, закипает при температуре плюс 100° С, тогда как максимальная температура кипения, например, сероводорода минус 61° С. Кроме того, вопреки всем законам физики, теплоемкость воды при нагревании (от 0 до 37) не повышается, а понижается. И, конечно же, всем известно, что при обработке магнитным полем, вода изменяет свою биологическую активность. Есть даже понятие «заговоренная» вода. Под влиянием молитв и заговоров она может творить чудеса. Недаром в сказках, вода делиться на два вида «живая», от которой проходят все болезни, от которой можно ожить, и «мертвая», которая убивает любого, кто ее отведает.
Все знают о важности воды в нашем организме. Присутствуя во всех клетках и тканях, играя главную роль во всех биологических процессах от пищеварения до кровообращения, вода выполняет много важных функций.
Вода должна стать для вас самым ключевым ингредиентом, если вы стремитесь иметь здоровое тело и отличное самочувствие. Ничто так не влияет на наше здоровье, как потребление воды.
Состав воды
24 июня 1783 г. А.Лавуазье и П.Лаплас в присутствии группы своих коллег-ученых «сделали» воду из кислорода и водорода. Воду они получили как продукт сгорания водорода (а то, что в процессе горения участвует кислород – «огненный ВОЗДУХ», стало известно чуть раньше). При этом вес образовавшейся воды равнялся весу водорода и кислорода, участвовавших в реакции горения.
Вот так в один день стало ясно, что вода - не простои элемент, а сложное вещество, но какой долгий и трудный путь вел к этому знаменательному дню, сколько огорчении, разочарований, ошибок и личных трагедий пережили естествоиспытатели, пока вода наконец-то раскрыла свою природу.
Структура воды
Молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах. Так как масса и заряд ядра кислорода больше чем у ядер водорода, то электронное облако стягивается в сторону кислородного ядра. При этом ядра водорода “оголяются”. Таким образом, электронное облако имеет неоднородную плотность. Около ядер водорода имеется недостаток электронной плотности, а на противоположной стороне молекулы, около ядра кислорода, наблюдается избыток электронной плотности. Именно такая структура и определяет полярность молекулы воды. Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура - правильный тетраэдр.
Благодаря наличию водородных связей каждая молекула воды образует водородную связь с 4-мя соседними молекулами, образуя ажурный сетчатый каркас в молекуле льда. Однако, в жидком состоянии вода – неупорядоченная жидкость; эти водородные связи - спонтанные, короткоживущие, быстро рвутся и образуются вновь. Всё это приводит к неоднородности в структуре воды.
То, что вода неоднородна по своему составу, было установлено давно. С давних пор известно, что лёд плавает на поверхности воды, то есть плотность кристаллического льда меньше, чем плотность жидкости.
В 1999 г. известный российский исследователь воды С.В. Зенин защитил в Институте медико-биологических проблем РАН докторскую диссертацию, посвященную кластерной теории, которая явилась существенным этапом в продвижении этого направления исследований, сложность которых усиливается тем, что они находятся на стыке трех наук: физики, химии и биологии. Им на основании данных, полученных тремя физико-химическими методами: рефрактометрии (С.В. Зенин, Б.В. Тяглов, 1994), высокоэффективной жидкостной хроматографии (С.В. Зенин с соавт., 1998) и протонного магнитного резонанса (С.В. Зенин, 1993) построена и доказана геометрическая модель основного стабильного структурного образования из молекул воды (структурированная вода), а затем (С.В. Зенин, 2004) получено изображение с помощью контрастно-фазового микроскопа этих структур.
Структурные исследования воды можно изучать разными методами; спектроскопией протонного магнитного резонанса, инфракрасной спекроскопии, дифракцией рентгеновских лучей и др. Например, дифракцию рентгеновских лучей и нейтронов в воде изучали много раз. Однако подробных сведений о структуре эти эксперименты дать не могут. Неоднородности, различающиеся по плотности, можно было бы увидеть по рассеянию рентгеновских лучей и нейтронов под малыми углами, однако такие неоднородности должны быть большими, состоящими из сотен молекул воды. Можно было бы их увидеть, и исследуя рассеяние света. Однако вода — исключительно прозрачная жидкость. Единственный же результат дифракционных экспериментов — функции радиального распределения, то есть расстояния между атомами кислорода, водорода и кислорода-водорода. Из них видно, что никакого дальнего порядка в расположении молекул воды нет. Эти функции для воды затухают гораздо быстрее, чем для большинства других жидкостей. Например, распределение расстояний между атомами кислорода при температуре, близкой к комнатной, даёт только три максимума, на 2,8, 4,5 и 6,7 A. Первый максимум соответствует расстоянию до ближайших соседей, и его значение примерно равно длине водородной связи. Второй максимум близок к средней длине ребра тетраэдра — вспомним, что молекулы воды в гексагональном льду располагаются по вершинам тетраэдра, описанного вокруг центральной молекулы. А третий максимум, выраженный весьма слабо, соответствует расстоянию до третьих и более далёких соседей по водородной сетке. Этот максимум и сам не очень ярок, а про дальнейшие пики и говорить не приходится. Были попытки получить из этих распределений более детальную информацию. Так в 1969 году И.С. Андрианов и И.З. Фишер нашли расстояния вплоть до восьмого соседа, при этом до пятого соседа оно оказалось равным 3 A, а до шестого — 3,1 A. Это позволяет делать данные о дальнем окружении молекул воды.