Реферат: Водень як альтернативний вид палива
У процесі конверсії метану водяною парою, діоксидом вуглецю, киснем та оксиду вуглецю водяною парою протікають наступні каталітичні реакції. Розглянемо процес отримання водню конверсією природного газу (метану).
Отримання водню здійснюється в три стадії. Перша стадія - конверсія метану в трубчастої печі:
CH4 + H2O = CO + 3H2 - 206,4 кДж / моль
або
CH4 + CO2 = 2CO + 2H2 - 248, 3 кДж / моль.
Друга стадія пов'язана з доконверсіею залишкового метану першій стадії киснем повітря і введенням в газову суміш азоту, якщо водень використовується для синтезу аміаку. (Якщо виходить чистий водень, другої стадії принципово може і не бути).
CH4 + 0,5 O2 = CO + 2H2 + 35,6 кДж / моль.
І, нарешті, третя стадія - конверсія оксиду вуглецю водяною парою:
CO + H2O = СO2 + H2 + 41,0 кДж / моль.
Для всіх зазначених стадій потрібно водяна пара, а для першої стадії - багато тепла, тому процес в енерго - технологічному плані проводиться таким чином, щоб трубчасті печі зовні обігрівалися спалюється в печах метаном, а залишкове тепло димових використовувалося для отримання водяної пари.
Розглянемо, як це відбувається в промислових умовах (схема 1). Природний газ, який містить в основному метан, попередньо очищають від сірки, яка є отрутою Щоб каталізатора конверсії, підігрівають до температури 350 - 370 C° і під тиском 4,15 - 4,2 МПа змішують з водяною парою в співвідношенні обсягів пар: газ = 3 , 0: 4,0. Тиск газу перед трубчастою піччю, точне співвідношення пар: газ підтримуються автоматичними регуляторами.
Утворюється парогазова суміш при 350 - 370 C° надходить у підігрівник, де за рахунок димових газів нагрівається до 510 - 525 С. Потім парогазову суміш направляють на першу сходинку конверсії метану - в трубчасту піч, в якій вона рівномірно розподіляється по вертикально розташованими реакційним труб (8). Температура конвертованого газу на виході з реакційних труб досягає 790 - 820 С°. Залишковий зміст метану після трубчастої печі 9 - 11% (об'емн.). Труби заповнені каталізатором.
Після реакційних труб конвертована парогазова суміш проходить підйомні труби (9) і по колектору (10) потрапляє в шахтний конвертор метану другого ступеня (11). Тут на нікелевому каталізаторі відбувається киснева конверсія залишкового метану. Температура конвертованого газу на виході з реактора другого ступеня досягає 990 - 1000 C°, залишкове вміст метану в конвертованій газі становить 0,35 - 0,55% (об'емн.).
Після двоступеневої конверсії метану, якщо водень призначається для синтезу аміаку, в конвертованій газі крім водню (57%) і азоту (22,4%) утримуються оксид вуглецю 13,4% і діоксид вуглецю 7,7% (об'емн.).
Оксид вуглецю далі перетворюється на водень та діоксид вуглецю в системі парової конверсії. Парова конверсія оксиду вуглецю до водню проводиться в два ступені. Перший ступінь конверсії здійснюється при температурі 330 - 400 С° на залізо-хромовому каталізаторі, при цьому на виході з конвертора першого ступеня вміст оксиду вуглецю у конвертованій газі падає до 3,3% (об'емн.), і з таким змістом оксиду вуглецю газ, пройшовши через випарник , набуває в другу, низькотемпературну ступінь конверсії. Тут на низькотемпературному каталізаторі конверсії, що містить оксидні сполуки міді, цинку, алюмінію, хрому, при температурі 190-210 С° відбувається доконверсія залишкового оксиду вуглецю до його змісту на виході з конвертора 0,4 - 0,5%. Далі газ надходить на очищення вуглецю різного роду поглиначами. Так у промислових умовах отримують чистий водень і азот-водневу суміш.
4 Отримання водню - майбутня технологія
Сучасна технологія забезпечує щорічне отримання в усьому світі десятків мільйонів тонн молекулярного водню. Понад 90% його виходить каталітичної конверсією метану, рідких вуглеводнів, газифікацією твердого палива. Абсолютно ясно, що у майбутньому при переході на водневу технологію такі джерела отримання водню, крім твердого палива, будуть в основному виключені. В якості основного джерела сировини буде використовуватися вода. В якості джерела енергії для розкладання води - атомна енергія в різних її видах (тепло, електроенергія) та енергія води, вітру у вигляді електричної енергії, енергія сонячного випромінювання. Загальна картина використання первинних джерел енергії для одержання водню представлена на схемі 3.
При уважному розгляді всього комплексу методів отримання водню видно, що якщо використання горючих копалин має прямий вихід до водню, то використання інших первинних джерел енергії в основному базується на використанні електричної енергії для електролітичного розкладання води, енергії Сонця в фотосинтетичних системах для розкладання води й атомного тепла в термохімічних системах для розкладання води. Електроліз води проводиться в промисловій практиці давно і широко описаний в літературі. Зараз робляться значні зусилля в науці промисловості, щоб використовувати невичерпну енергію сонячного випромінювання для розкладання води. Це і застосування фотолізних осередків для розкладання води, сонячних осередків для отримання електроенергії з подальшим її використанням при електролізі води. Головне завдання, яке тут вирішується, полягає в тому, щоб провести під безпосереднім впливом сонячної енергії ряд фотохімічних реакцій з цільовим призначенням розкладання води до водню кисню. Суть проблеми полягає в тому, щоб підібрати такі біологічні системи, які будуть використовувати сонячну енергію для розкладання води.
Але найбільш в технологічному плані є методи термохімічної розкладання води. Ці методи важливі тим, що для розкладання води вони можуть використовувати і тепло атомних реакторів, сонячне тепло, і тепло геотермальних вод, і будь-які інші види тепла, наприклад перепад температур верхніх і нижніх шарів тропічних морів. Розробляються та комбіновані термохімічні процеси, які поряд з теплом використовують електричну енергію – термоелектрохімічних процеси, сонячне випромінювання, фото-і термохімічні процеси. Термохімічні процеси розкладання води привабливі ще й тим, що в результаті цілого ряду хімічних перетворень, що протікають у термохімічної циклі (системі), з циклу в навколишній простір нічого, крім водню і кисню, не виділяється. Всі хімічні процеси, що супроводжують розкладання води, знаходяться в закритому циркуляційному контурі. У цей контур підводяться тільки вода і тепло (високопотенціальні), від контуру відводяться водень, кисень і тепло (низькопотенційні).
5 Багатоликий водень
Ми підняли лише краєчок завіси сцен на якій діє один з найцікавіших елементів нашого Всесвіту - багатоликий водень. Аж до XX ст. Всі були переконані, що за «горючим повітрям» Кавендіш, гідрогеніумом Лавуазьє ховається елемент, що породжує при своєму з'єднанні з киснем звичайну воду.
Але в XX ст. Водень придбав багатоликість. У природі були відкриті три різних водню, три його ізотопу, які були названі відповідно до складності своїх ядер. Найлегший - проти. Водень у звичайній воді в основному складається з протію. Але у воді є і більш важкий водень - дейтерій. На кожні 6700 атомів протію доводиться один атом дейтерію.
Існує і надважкий водень - тритій. Тритій радіоактивний. Він безперервно утворюється в стратосфері під дією космічного випромінювання. Є припущення, що це не межа для існування нових, ще більш важких ізотопів водню, які повинні бути радіоактивні.
Дейтерій - вихідний елемент для енергії майбутнього. Вперше існування важкого водню - дейтерію було доведено в 1932 році. Незважаючи на відносно малий вміст дейтерію в звичайній воді, загальна кількість дейтерію на Землі дуже велике. За підрахунками академіка І. В. Курчатова, 1 літр звичайної води по енергії, що міститься в ньому дейтерію еквівалентний приблизно 400 л нафти, тому дейтерію кат палива майбутнього вистачить на сотні мільйонів років. (Згадайте ще раз героя Жуля Верна).
Кількість тритію на Землі зникає мало. Його менше 1 кг, але, незважаючи на це, його можна виявити в кожній краплі води. А його значення в майбутній енергетиці, можливо, ще більш велика, ніж дейтерію. Він нестійкий, період його напіврозпаду - 12, 262 року.
Водень (проти), дейтерій і тритій утворюють двохатомних молекул. Молекули з однаковими атомами Н2, D2, Т2 існують у двох ядерно-ізомерних формах, орто- і пара-форми. Ця ізомерія є вихідною причиною відмінності магнітних, спектральних та термічних властивостей обох модифікацій.
Моя розповідь про водні і водневої технології був би неповним, якби ми не вказали на ще один лик водню - атомарний водень, переможний хід якого в техніці належить. Справа в тому, що атомарний водень більше перспективне пальне, ніж проти.
Р. Вуд в 1922 р. встановив, що при пропусканні тихих електричних розрядів через водень, що знаходиться під тиском в декількох десятих часток міліметра ртутного стовпа, можна отримати атомарний водень. Скільки отримують водню і для яких цілей?
Водень отримують у газоподібному вигляді і, якщо для використання необхідний рідкий водень, його піддають глибокому охолодженню і зрідження.
Виробництво молекулярного водню в 1985 році досягло приблизно 57 млн. тонн (без СРСР), а в 1990 році вже 95. Якщо згадати, що водень це газ, який в 14,5 рази легший за повітря, то стане ясно, який це величезний об'єм.
Де ж у цей час використовується така маса водню? По-перше, в азотній промисловості, для отримання синтетичного аміаку. По-друге, для отримання метанолу з СВ і Н2, Значна кількість водню використовується в нафтохімічній промисловості для очищення нафти від сірчистих сполук, для гідрування важких нафтових фракцій і підвищення виходу легких фракцій, у ряді нафтохімічних синтезів, для гідрування жирів, в металургії для відновлення руд чорних і кольорових металів, рідкий водень необхідний в авіації і космонавтиці, у ряді виробництв. У майбутньому споживання водню буде рости більш високими темпами. Виникне промисловість синтетичного рідкого і газоподібного палива на базі твердих горючих копалин (гідрування і гідрогазифікація твердих палив).