Реферат: Водно-солевой обмен

Большую часть воды в организме (у человека до 2/3) составляет внутриклеточная вода; меньшую часть (у человека около 1/3)-внеклеточная вода, которая разделена на субкомпартменты: интерстициальная, синовиальная и др. Распределение воды в теле человека неравномерно, наименьшее количество ее содержат кости (45% и жировая ткань, наибольшее — кровь (92%), моча (83%), слюна 99%, пот (97%).

Вода в живом организме может быть в свободной и связанной форме. Если и водном растворе содержатся ионы какого-либо электролита, то вокруг них ориентируются диполи воды, так как ионы обладают зарядом. Вокруг катионов диполи воды располагаются своими отрицательно заряженными концами, вокруг анионов — положительно заряженными. Такое связывание воды называется электростатической гидратацией.

Высокомолекулярные соединения тоже гидратируются, если содержат полярные, ионогенные группировки (карбоксикпьные, альдегидные, спиртовые, аминогруппы и др.). При этом гидратная оболочка может быть не сплошной, а только вокруг полярных групп. Степень гидратации различных ионов и молекул не одинакова, зависитот размеров частиц и величины их заряда. Чем выше удельная плотность заряда (больше заряд и меньше размеры), тем сильнее гидратация. Молекулы воды располагаются при гидратации тремя слоями:

1) непосредственно около иона, строго упорядочены и ориентированы сильным электрополем;

2) слой воды на некотором отдалении от иона, ориентированность молекул воды меньшая;

3) далеко отстоящие от иона молекулы воды с обычной структурой

Благодаря гидратации ионов и молекул часть воды в организме находится в связанном состоянии. Водородные связи макромолекул удерживают часть молекул воды.

Вокруг молекул белка, например, слой строго структурированной воды достигает толщины 1—2 нм и составляет до 30% массы гидратированной белковой молекулы. Следующий слой гидратационной воды — до 10 нм, и вода еще сохраняет в нем некоторую ориентацию. Кроме того, вода входит в третичную структуру ряда макромолекул и надмолекулярных структур. Помимо того, что вода связана непосредственно на молекулярном уровне, она входит и в состав субклеточных рибосом, лизосом, мембран митохондрий, эндоплазматического ретикулума, ядерной оболочки. Воду, связанную субклеточными образованиями, называют иммобильной водой. Слабосвязанная вода может служить растворителем, замерзает при температурах, близких к О0 С. Прочносвязанная вода почти не способна быть растворителем, она замерзает при темперах значительно ниже 0°С.

Велика и многообразна роль воды в жизни любого организма. Прежде всего она заключается в том, что вода является основной средой протекания жизненных процессов. В этом отношении очень важны уникальные свойства воды как растворителя. Присутствие в молекуле воды двух атомов водорода и двух необобщенных электронных пар обуславливает образование 4 водородных связей которые придают воде исключительную растворяющую способность. Это свойство позволило воде стать универсальной и доминирую щей дисперсионной средой в биологических системах. Другое важное свойство воды — полярность ее молекул, способность к диссоциации. Благодаря этому свойству она активирует диссоциацию других веществ, особенно слабых электролитов, которые широко представлены в биологических системах. В чистом виде слабые электролиты находятся в недиссоциированном состоянии. При растворенни в воде они диссоциируют и становятся реакционно-активными, что часто является условием их биологической активности.

Будучи основой внутренней среды в клетках и участвуя непосредственно в формировании клеточных структур, вода в значительной мере определяет их активность. Так, от степени набухания митохондрий зависит интенсивность протекающих в них процессов окислительного фосфорилирования, от насыщения водой рибосом— активность биосинтеза белка. Обезвоживание листьев растений снижает интенсивность фотосинтеза вследствие неблагоприятных конформационных изменений ферментов хлоропластов, участвующих в темновой фазе фотосинтеза (другая причина- закрывание устьиц). Только при определенной степени оводненности белки и нуклеиновые кислоты полностью проявляют свою биологическую активность.

Вода непосредственно участвует в ряде биохимических реакций, прежде всего — в гидролитических. Важную роль она играет в процессах теплорегуляции, ее испарение через поверхность тела животных и растений снижает температуру, предотвращает перегрев. Вода характеризуется очень высокой теплотой парообразования и теплоемкостью, это обеспечивает надежную стабилизацию температуры организма. Вода определяет легкость протекания обменных процессов между организмом и средой: например, увлажненность стенок клеток корневых волосков способствует растворению и поглощению питательных солей корнями. Малая вязкость воды обеспечивает высокую скорость движения по кровеносным и лимфатическим сосудам, по флоэме и ксилеме растений. Большое значение воды в процессах жизнедеятельности объясняет, почему животные переносят отсутствие воды хуже, чем отсутствие пищи. Например, голуби без пищи погибают через 2 недели, а без воды — через 5 дней, мыши без воды погибают в 10 раз быстрее, чем без пищи.

В обычных условиях взрослый человек теряет в сутки 1500 мл воды, 600 мл удаляется через кожу в виде пота, 500 мл — с мочой, 400 мл — с выдыхаемым воздухом. Основная масса воды потребляется с пищей. Так как при полном окислении белков, жиров и углеводов в количествах, обеспечивающих выделение энергии, равное 8400 кДж/сут, образуется 350 мл воды, то потребление воды должно составлять 1150 мл. Вода, образующаяся при обмене белков, жиров и углеводов, получила название эндогенной воды.

Очень энергично обмен воды осуществляется в растениях: в жаркий день через лист проходит количество воды, в два раза превышающее его массу. Предел потери воды, при котором нет еще видимых резких нарушений жизненных процессов, зависит от вида организма.

Так, мышечная ткань лягушки может терять воду с 80 до 20% без существенных отрицательных явлений.

Тело же человека может перенести снижение содержания воды не более чем на 10%. Растения тоже очень чувствительны к потере воды; только в семенах и спорах жизнь сохраняется при очень низком содержании воды (около 10%)-

проникновение воды в клетку и обратно осуществляется через поры клеточных мембран. Механизм этого процесса исследован недостаточно. Существует ряд точек зрения на этот процесс. По мнению одних ученых, перенос воды осуществляется за счет свободной диффузии, другие — придают решающее значение осмотическим явлениям, третьи — считают этот процесс активным, что обусловлено взаимодействием дипольных молекул с полярными веществами мембран.

В регуляции обмена воды у человека и животных первостепенное значение имеют импульсы, возникающие в коре головного мозга. Поступление воды в организм регулируется чувством жажды, она возникает в результате рефлекторного возбуждения соответствующих участков коры головного мозга при первых признаках изменения осмотического давления плазмы крови.

Исследованиями выдающихся советских физиологов Л. А. Орбели и К. М. Быкова доказана регулирующая роль высших отделов центральной нервной системы в процессах водного и минерального обмена: при мнимом питье у животного с фистулой в пищеводе вода не попадает в желудок, однако сам акт питья способствует удалению воды из кровяного русла, что наблюдается при нормальном приеме воды. Сильные эмоциональные переживания нередко сопровождаются усиленным выделением мочи, а иногда приводят наоборот, к анурии — задержке мочеотделения.

Гормоны гипофиза оказывают существенное влияние па баланс воды. Диуретический гормон передней доли гипофиза обеспечивает выведение воды а его антагонист вазопрессин (гормон задней доли гипофиза) удерживает воду, обеспечивая обратное всасывание ее в почечных канальцах. Катионы Naудерживают воду в клетках и тканях, К и Са способствуют ее выведению. Всасывание воды начинается в желудке, однако основная масса её всасывается в кишечнике. Ряд тканей и органов при избыточном поступлении воды могут служить ее депо. У человека и животных это кожа и печень, у растении — межклеточное пространство. Уровень испарения воды у растений регулируется в основном устьичным аппаратом.


Минеральные вещества

Образующаяся после сжигания живого организма зола составляет у позвоночных животных 3—5% от массы всего тела, у растении меньшее количество — 0,5—3%, еще меньше у микроорганизмов — 0.4—2%. Отдельные ткани и органы существенно отличаются по содержанию зольных элементов. Так, в костной ткани позвоночных животных их количество составляет около 17%, в сухой обезжиренной ткани зубов — до 55, а в мышцах и плазме крови — менее I % на сырую массу.

У растений минеральных веществ много в листьях — 10—15% на сухую массу, существенно меньше в корнях и семенах — 3—5%, особенно мало в древесине — 1%. Для бактерий характерны очень большие колебания в содержании зольных элементов в зависимости от условий выращивания. Так. у Vibriocholeraeграницы колебаний составляют от 6 до 26% на сухую массу, в то время как при стандартной питательной среде и обычных других условиях —3—10%.

Минеральные элементы присутствуют в живом организме в различных формах:

1) в прочном соединении с органическими веществами (Sв составе белков, Р — в нуклеиновых кислотах, Fe —в гемоглобине, Znи Си — в молекулах ряда ферментов);

2) в форме нерастворимых отложений (Са и Р в костях);

3) в растворенном состоянии в тканевых жидкостях, цитозоле (катионы К+,Na+ Са2+ анионы CI- SO2-4, РО3-4 ).

Велико и многосторонне значение неорганических солей в жизни любого организма. Они создают определенное осмотическое давление в отдельных тканях, органах, жидкостях, которое является важным физиологическим фактором, влияющим на распределение воды и растворенных веществ по отдельным тканям. Особенно чувствительны к изменениям осмотического давления высшие животные, у них в процессе эволюции выработались приспособления, обеспечивающие постоянство осмотического давления плазмы крови, лимфы, внеклеточной жидкости.

Так, осмотическое давление плазмы крови человека колеблется в достаточно узких границах (7,7—8,1 атм.). Такое постоянство поддерживается особой регуляторной системой, в которой основную роль почки и потовые железы. Впротивоположность у морских беспозвоночных осмотическое давление в организме зависит от осмотического давления окружающей среды. Если разводить морскую воду пресной, давление у них уменьшается.

У растений разность осмотического давления клеточного сока и тургорного напряжения оболочки клетки определяет «сосущую силу» клетки, интенсивность апоступления воды и питательных веществ. Для растений характерны большие колебания величины осмотического давления в зависимости от условий выращивания.

К-во Просмотров: 832
Бесплатно скачать Реферат: Водно-солевой обмен