Реферат: Вплив факторів кріоконсервування на морфофункціональні властивості тромбоцитів людини
Встановлено фактори, які мають визначальний вплив на ефективність кріоконсервування тромбоцитів – склад кріозахисного середовища та швидкість охолодження кріобіологічної системи в інтервалі кристалізації і зоні евтектичних температур. Вперше експериментально доведена доцільність використання при заморожуванні тромбоцитів комбінації кріопротекторів – ДМАЦ та 1,2-ПД. Теоретично обґрунтована і експериментально апробована програма заморожування концентратів тромбоцитів з оптимальними швидкостями проходження температурного інтервалу кристалізації. Вагомим підтвердженням важливості застосування розробленої програми охолодження є вперше встановлений факт збереження структурної цілісності і функціональних властивостей тромбоцитів при їх заморожуванні без кріопротектора, за умови поєднання процедури температурної ініціації кристалізації з наступною контрольованою швидкістю охолодження в температурному інтервалі від 0/-1,5 до -35…-40 єC.
Вперше проведене порівняльне дослідження антирадикальних властивостей кріопротекторів різних класів хімічних сполук та їх впливу на інтенсивність ПОЛ у системі “тромбоцити-плазма”. Показано, що характер впливу кріопротекторів на інтенсивність процесів ПОЛ у системі визначається, перш за все, їх хімічною природою, а не здатністю до перехоплення гідроксильних радикалів. Експериментально встановлено, що 1,2-ПД і ДМАЦ у кінцевій концентрації 0,7 М не впливають на рівень пероксидації ліпідів у системі “тромбоцити-плазма” на етапі експозиції.
Практичне значення одержаних результатів. Експериментально встановлена висока ефективність способу кріоконсервування концентратів тромбоцитів у кріозахисному середовищі на основі комбінації ДМАЦ з 1,2-ПД у кінцевій концентрації 0,7 М при застосуванні розробленої програми заморожування з контрольованою швидкістю охолодження у температурному інтервалі кристалізації, дозволяє рекомендувати його при подальшому створенні технології довгострокового зберігання тромбоцитів для клінічного застосування. Практичне значення для роботи низькотемпературних банків крові мають отримані у роботі експериментальні дані про можливість збільшення до 18 – 24 годин проміжку часу між виділенням і заморожуванням концентратів тромбоцитів (загальноприйнятий термін 4 – 6 годин) за умови їх зберігання при температурі 22 ± 2 єC і постійному перемішуванні. Розроблено новий спосіб максимального видалення кріопротекторів із суспензії тромбоцитів за умов мінімального механічного та осмотичного навантаження на кров’яні пластинки [Пат. №15014 Україна, 2006]. Показано, що для більш повної оцінки морфофункціонального стану тромбоцитів на етапах кріоконсервування доцільним є застосування методу люмінесцентної мікроскопії, який базується на різній здатності кров’яних пластинок акумулювати акридиновий оранжевий (АО) в залежності від їх структурної цілісності та функціональних властивостей.
Особистий внесок дисертанта. Дисертантом самостійно підготовлено огляд літератури за темою дисертації, отримано експериментальні дані, проведено статистичну обробку, аналіз і узагальнення результатів досліджень. В опублікованих спільно зі співавторами працях особистий внесок здобувача полягає:
– в роботах [2,6,7,8,9] у визначенні інтенсивності ПОЛ в системах “тромбоцити-плазма”, “тромбоцити-плазма-кріопротектор”; дослідженні здатності кріопротекторів до перехоплення гідроксильних радикалів у модельній системі; проведенні статистичної обробки отриманих результатів;
– в роботах [1,3,4,5] у здійсненні виділення концентратів тромбоцитів, плануванні та проведенні експериментів з дослідження впливу методу виділення концентратів тромбоцитів, кріопротекторів, режимів заморожування на морфофункціональні властивості тромбоцитів; відпрацюванні способу видалення кріопротектора із суспензії тромбоцитів; проведенні статистичної обробки отриманих результатів; визначенні ступеня пошкодження тромбоцитів за активністю цитозольних ферментів у позаклітинному середовищі; відпрацюванні методики приготування цитологічних препаратів та проведенні люмінесцентної мікроскопії.
Апробація результатів дисертації. Основні положення дисертаційної роботи доповідалися та обговорювалися на щорічній конференції молодих учених ІПКіК НАН України “Холод у біології і медицині” (Харків, 2005 рік); конференції молодих учених “Актуальні проблеми біохімії та біотехнології - 2005” (Інститут біохімії ім. О.В. Палладіна НАН України, Київ, 2005 рік); 4-й національній науково-практичній конференції з міжнародною участю “Активные формы кислорода, оксид азота, антиоксиданты и здоровье человека” (Смоленськ, Росія, 2005 рік), ІХ Українському біохімічному з’їзді (Харків, 2006 рік).
Публікації. За матеріалами дисертаційного дослідження опубліковано 9 робіт, з яких: 4 наукових статті у спеціалізованих фахових виданнях, 4 тез доповідей на наукових конференціях, 1 деклараційний патент на корисну модель.
Обсяг і структура дисертації. Дисертацію викладено на 162 сторінках друкованого тексту, з яких 124 сторінки основного змісту. Дисертація складається зі вступу, огляду літератури, опису матеріалів і методів досліджень, результатів власних досліджень, аналізу і узагальнення результатів досліджень, висновків, переліку використаних літературних джерел (22 сторінки), що вміщує 222 джерела. Дисертацію ілюстровано 7 таблицями та 48 рисунками.
ОСНОВНИЙ ЗМІСТ РОБОТИ
Матеріали і методи досліджень
Матеріалом для досліджень були концентрати тромбоцитів (КТ), отримані фракціонуванням донорської крові, заготовленої на консерванті “Глюгіцир” в полімерні контейнери “Гемакон”. Виділення КТ здійснювали двома методами: із збагаченої тромбоцитами плазми (ЗТП) [Волкова Р.И. и др., 1992] та з лейко-тромбоцитарного шару (ЛТШ) [Аграненко В.А. и др., 1991]. Перед проведенням експериментальних досліджень КТ зберігали у контейнерах “Компопласт” до 18 – 24 годин при 22 ± 2 єC в умовах постійного перемішування зі швидкістю 2 об/хв. У межах 2 – 4 годин після виділення КТ визначали його кількісний склад [Перфильева Е.А. и др., 2003; Ронин В.С., 1983].
У роботі використовували кріопротектори: ДМСО, 1,2-ПД, ДМАЦ, гліцерин (ГЛ), оксиетильований гліцерин зі ступенем полімеризації 5 (ОЕГn=5), очищені та ідентифіковані у відділі кріопротекторів ІПКіК НАН України. З метою мінімізації осмотичного стресу додавання розчинів кріопротекторів до КТ у співвідношенні 1:1 здійснювали при 22 ± 2 єC у відповідності до рекомендованих схем [ArnaudF.G. etal., 1990; Компаниец А.М., 1992; 1995; WoodsE.J. etal., 1999]. Дослідження здатності кріопротекторів до перехоплення гідроксильних радикалів у модельній системі їх генерації проводили за методом [HalliwellB. еt al., 1987]. Визначення вмісту гідроперекисів ліпідів (ГПЛ) у системах “тромбоцити-плазма” та “тромбоцити-плазма-кріопротектор” здійснювали за методом [AsakawaJ., 1980]. Кінцеві концентрації ДМСО, ДМАЦ, 1,2-ПД, ГЛ складали 0,5; 0,7 та 1 М; ОЕГn=5: 0,25 та 0,125 М; час експозиції КТ з кріопротекторами – 5; 15; 30 хвилин. Інтенсивність індукованого іонами заліза ПОЛ у системі “тромбоцити-плазма” та “тромбоцити-плазма-кріопротектор” визначали за методом [Владимиров Ю.А., 1972] одразу після введення індуктора та через 15 і 30 хвилин. Кінцева концентрація ДМСО, ДМАЦ, 1,2-ПД, ГЛ складала 0,7 М; ОЕГn=5: 0,25 та 0,125 М.
Морфофункціональні властивості тромбоцитів: здатність накопичувати АО [Деменко В.Д. и др., 1990], здатність до індукованої АДФ та колагеном агрегації [BornG.V.R., 1962], реакцію на гіпотонічний шок (РГШ) [Компаниец А.М., 1992] досліджували у межах 2 – 4 годин після виділення КТ та після 18 – 24 годин зберігання, а також після експозиції КТ з ДМСО, 1,2-ПД, ДМАЦ у кінцевих концентраціях 0,7 та 1,4 М протягом 5; 30 хвилин і наступного видалення кріопротекторів розробленим способом [Пат. № 15014 Україна, 2006]. Агрегаційну здатність тромбоцитів додатково визначали у присутності вищезазначених кріопротекторів у кінцевій концентрації 0,1 М. Ступінь пошкодження кров’яних пластинок на етапах виділення та зберігання КТ визначали за активністю у супернатанті ферменту лактатдегідрогенази (ЛДГ) [Лемешко В.В. и др., 1989]. Ступінь пошкодження тромбоцитів на етапі експозиції КТ з кріопротекторами визначали за активністю у супернатанті ферментів: ЛДГ та Г6ФДГ [Родионова В.Л. и др., 2005]. Кінцеві концентрації ДМСО, 1,2-ПД, ДМАЦ складали 0,7 М, а комбінацій ДМАЦ + 1,2-ПД: 0,7 та 0,35 М; час експозиції КТ з кріопротекторами та їх комбінаціями становив 15 хвилин.
Кріозахисні розчини (1,4 М ДМСО, ДМАЦ, 1,2-ПД, ДМАЦ + 1,2-ПД та 0,7 М ДМАЦ + 1,2-ПД на плазмі, плазма без кріопротектора) вводили в КТ у співвідношенні 1:1 при 22 ± 2 єC протягом 1 хвилини, одразу після чого здійснювали заморожування зразків за допомогою програмного заморожувача “Cryoson” (Німеччина) у кріоампулах “Nunc”. Об’єм зразка становив 1,6 мл.
При порівняльному дослідженні ефективності кріоконсервування КТ, виділених з донорської крові двома методами, застосовували ДМСО у кінцевій концентрації 0,7 М та програму заморожування №1.
При дослідженні впливу процедури заморожування КТ в температурному інтервалі кристалізації (від 0/-1,5 до -35…-40 °C) на показники структурної цілісності і функціональних властивостей кріоконсервованих тромбоцитів застосовували наступні програми:
програму №1: охолодження зразка від 22 ± 2 °C до -35…-40 °C проводили зі швидкістю 1°C/хв, після чого – занурювали у рідкий азот;
програму №2: зразок охолоджували аналогічно програмі №1, але додатково вводили процедуру температурної ініціації кристалізації, після чого застосовували контрольовану швидкість охолодження 6 – 7 °C/хв;
програму №3: охолодження зразка проводили аналогічно програмі №2, але після процедури температурної ініціації кристалізації зменшували швидкість його охолодження до 0,2 – 0,3 °C/хв.
Заморожування зразків за зазначеними програмами здійснювали з кріопротектором та без нього. При застосуванні програм, що передбачали процедуру температурної ініціації кристалізації, величина переохолодження не перевищувала 0,5 – 1 °С.
При дослідженні впливу швидкості заморожування КТ з ДМСО в зоні евтектичних температур (від -35…40 до -80 єC) на показники структурної цілісності і функціональних властивостей тромбоцитів застосовували програми №4 – №7 (табл. 1).
Показники структурної цілісності і функціональних властивостей тромбоцитів, отримані після кріоконсервування КТ за програмами №4 – №7, порівнювали з відповідними показниками після заморожування КТ того ж донора за програмами №1, №2 та №8 [BalintB. еtal., 2006], що за даними літератури забезпечує високий рівень збереженості кров’яних пластинок. При дослідженні кріозахисної ефективності середовищ різного композиційного складу застосовували програми заморожування №1 та №2.
Таблиця 1
Програми заморожування №4 – №7
Прог- рами | Швидкість охолодження в температурних інтервалах | ||
від 22 ± 2 до -35…-40 °C | від -35…-40 до -80 °C | від -80 до -196 °C | |
№4 | 1 °C/хв | 0,5 – 1 °С/хв | занурення в рідкий азот |
№5 | 1 °C/хв | 5 – 7 °С/хв | занурення в рідкий азот |
№6 | 1 °C/хв | 10 – 15 °С/хв | занурення в рідкий азот |
№7 | 1 °C/хв | 25 – 30 °С/хв | занурення в рідкий азот |
Відігрівання зразків здійснювали на водяній бані при 37 °C, одразу після чого проводили оцінку кількісної збереженості тромбоцитів та визначення ступеня їх пошкодження за активністю в супернатанті цитозольних ферментів. Ступінь пошкодження тромбоцитів після термоциклювання (Т) приймали за 100 %. Морфофункціональні показники кріоконсервованих клітин визначали після видалення кріопротектора.
Статистичну обробку одержаних результатів проводили із застосуванням критерію Стьюдента та непараметричного критерію Вілкоксона-Манна-Уітні.
Результати досліджень та їх обговорення