Реферат: Введение в теорию многоэлектронного атома. Элементы теории многоэлектронных атомов

частиц

1 2 3 4 i j

z

V1 V12 V13 V14 ... V1i V1j V1z V2 V23 V24 ... ... ... V2z ... ... ... ... ... ... ... ... ... Vi ... ... ... ... ... Vij Viz ... ... ... ... ... ... ... ... ... Vj Vji ... Vjz ... ... ... ... ... ... Vz-1 ... Vz-1,z Vz ... ... ... ... ... ...

Отдельные диагональные слагаемые этой таблицы равны Vi= –Ze2/ri. Каждое из них представляет из себя энергию электростатического кулоновского притяжения одного из электронов к ядру. Недиагональные слагаемые Vij=+Ze2/rij. Полное выражение электростатической потенциальной энегии в атоме: Результирующий эффективный потенциал межэлектронного отталкивания превращается в эффективный потенциал "экранирования" ядра:

s(ri) - заряд экранирования (функция экранирования) отдельного электрона внутренними электронами, более близкими к ядру.

В этом случае потенциальная кулоновская энергия притяжения всех электронов к ядру дополняется эффективной потенциальной функцией экранирования ядра, и получается эффективное приближённое аддитивное выражение для всей кулоновской потенциальной энергии электронной оболочки

Микросостояния и атомные термы в приближении Рассела-Саундерса.

Этот раздел целесообразно рассмотреть на конкретных примерах.

Содержание. Электронная конфигурация. Микросостояния и их систематизация. Порядок учёта кулоновских взаимодействий и постадийная классификация дискретных электронных уровней и состояний атома (электронно-ядерное притяжение и орбитальные уровни, межэлектронное отталкивание и атомные термы Рассел-Саундерса, спин-спиновая корреляция и запрет Паули). Суммарные квантовые числа ML,MS,L,S. Атомное внутреннее квантовое число J. Термы нормальные и обращённые. Правила Хунда (1-е, 2-е и 3-е). Относительная шкала энергии атомных термов. Спектральные переходы и правила отбора. Атомные уровни в магнитном поле, эффект Зеемана (практикум).

Электронная конфигурация представляет собой исходное понятие. Оно определяется в нулевом приближении в оценке энергии. Далее постепенно учитываются всё более тонкие взаимодействия, и возникает более точная картина состояний и уровней многоэлектронного атома. Если атомный подуровень заселён неполностью, то возникает несколько различных микросостояний. Их характеристики непосредственно определяются комбинаторикой размещений электронов в системе спин-орбиталей.

Если n электронов заселяют g спин-орбиталей, то одно из формальных обозначений конфигурации (g,n). В её пределах число возможных микросостояний определяется согласно статистике Ферми: W(g,n) = g! / [n! (g - n) !].

Пример 1: основная электронная конфигурация атома углерода C (1s22s22p2)

Конфигурация p2 (атомы IV группы элементов C, Si. .). W(6,2) = 6! / [2! (6 - 2) !] =15

Перечислим все возможные варианты орбитальных размещений и спиновых комбина-ций 2-х электронов на трёх АО:

Орбитальные распределения двух электронов

Возможно всего шесть размещений внутри p-АО без учёта спина Орбитальные распре-деления можно охарак-теризовать комбинаци-ями квантовых чисел частиц (m1, m2):

(+1,+1) А (0, 0) Б (- 1, - 1) В (+1, 0) Г (+1, - 1) Д (0, - 1) Е

Комбинации пространственных (орбитальных) состояний частиц в коллективе легко описать разными способами. Возможные спиновые комбинации в системе двух частиц-фермионов с половинным спином (электронов, протонов,. .) можно представить разными способами. Можно изобразить ориентации спинов разными символами (стрелками, знаками или греческими буквами). Результат сложения компонент момента импульса вдоль оси вращения представми в одной из строк таблицы значениями суммарного магнитногоквантового числа. Все возможные комбинации спиновых векторво отдельных электронов попадут в таблицу:

Способ 1 ­­ ­Ї Ї­ ЇЇ Эти три способа
Способ 2 (++) (– +) (–+) (– –) Описания
Способ 3 aa ab ba bb Идентичны
Можно как-либо еще, а в итоге будет:

где

MS(1,2) = mS(1) + mS(2)

MS(1,2) 1 0 0 -1
MS(1,2) +1 0 –1

Микросостояния в рамке,

выделенные на тёмном фоне,

принципу Паули

не удовлетворяют и должны

быть исключены из

дальнейшего анализа

A  А  А А
A  Б  Б A 
A  В  В A 
Г Г Г Г
Д Д Д Д
Е Е Е Е

Из сочетания одного из орбитальных и одного из спиновых распределений с учётом запрета Паули (на одной и той же орбитали запрещены комбинации с параллельными спинами aa и bb) получается одна из возможных спин-орбитальных комбинаций. Такую комбинацию (размещение) называют микросостоянием оболочки. Микросостояния, выделенные жирным шрифтом в каждой отдельной ячейке таблицы, физически тождественны (). Нет способов различить состояния отдельных частиц в пределах общей орбитали - фазовой ячейки. Всего получено 15 микросостояний электронной оболочки в исследуемой конфигу-рации. Сравним разные приёмы табулирования признаков микросостояний.


Например:


? ??????? ?????? ????? (ML, MS) ????? ???????? ???????????????? ?????????????? ????????, ?? ??? ??? ?? ????????????? ??????????????.

К-во Просмотров: 116
Бесплатно скачать Реферат: Введение в теорию многоэлектронного атома. Элементы теории многоэлектронных атомов