Реферат: Вычисление корней нелинейного уравнения

При а =0.1

Интервал изменения параметра x
Строим график функции

При интервале изменения коэффициента x
График имеет вид

При а=0 функция f(x)=0 имеет значения корня x=0.77

Находим более точное значение корня
-вычислительный блок
-процедура нахождения корня
-более точное значение корня
Проверка:
При а =1
Интервал изменения параметра x
Строим график функции
При интервале изменения коэффициента x
График имеет вид
При а=1 функция f(x)=0 имеет приближенное значения корня x=0,21

Находим более точное значение корня
-вычислительный блок
-процедура нахождения корня
-более точное значение корня
Проверка:

При а =2

Интервал изменения параметра x
Строим график функции

При интервале изменения коэффициента x
График имеет вид
При а=2 функция f(x)=0 имеет приближенное значения корня x=-0,25

Находим более точное значение корня
-вычислительный блок
-процедура нахождения корня
-более точное значение корня
Проверка:

Нахождение более точного значения корня при помощи root

-приближенное значение корня
Находим min и max функции
-шаг изменения аргумента
- на интервале от -10 до 10
- на интервале от -10 до 10
Разложение функции d(x)=exp(x) в степенной ряд
- интервал изменения аргумента

К-во Просмотров: 133
Бесплатно скачать Реферат: Вычисление корней нелинейного уравнения