Реферат: Застосування теоретико-польових методів до низькорозмірних квантових систем при скінченній температурі

У вступі обґрунтовано актуальність обраної в дисертації теми досліджень, сформульовано завдання та мету досліджень, розкрито наукову новизну та практичне значення отриманих результатів, наведено зв’язок із науковими програмами, апробацію результатів дисертаційної роботи та визначено основний внесок здобувача.

В першому розділі “Фізичні низькорозмірні системи квазірелятивістських ферміонів” зроблено огляд літератури з теоретичних та експериментальних досліджень двовимірних квантових ферміонних систем.

В першому підрозділі першого розділу обґрунтовується застосовність неперервної моделі для ефективного опису електронних властивостей графену в довгохвильовому наближенні. Атоми вуглецю в графені утворюють правильну шестикутну гратку з одним валентним електроном на кожному вузлі. Елементарна комірка має ромбічну форму і містить два атоми, отже графенова гратка складається з двох трикутних підграток. Перша зона Брилюена являє собою правильний шестикутник, вершини якого ототожнюються з точками Фермі, з яких дві взаємно протилежні є нееквівалентними. В рамках неперервної моделі одночастинковим гамільтоніаном є гамільтоніан Дірака–Вейля для безмасових електронів у 2+1-вимірному просторі-часі зі швидкістю світла, заміненою на швидкість Фермі:

(1)

де і це 4Ч4 матриці, що належать звідному представленню, утвореному як пряма сума двох нееквівалентних незвідних представлень алгебри Кліфорда у 2+1-вимірному просторі-часі. Одночастинкова хвильова функція, що описує електронні збудження в графені, має чотири компоненти, які відповідають двом підграткам і двом нееквівалентним точкам Фермі.

Другий підрозділ першого розділу знайомить з топологічними дефектами, які приводять до скручення графену у графітові наноконуси. Такими топологічними дефектами є дисклинації в шестикутній атомарній гратці, які відповідають заміні шестикутника на многокутник з кутами, де – ціле число, що менше за 6. Відповідно, із двовимірного кристалу графену вилучається або додається сектор, величина якого кратна. Многокутники з () індукують локально додатню (від’ємну) кривину, в той час як вдалині від дефекту графітова плівка залишається плоскою так само, як і конічна поверхня вдалині від вершини. Звичайно, многокутні дефекти з та є математичною абстракцією, як і конуси з точковою вершиною. В дійсності дефекти згладжуються, і фактично перераховує кількість п’ятикутних дефектів, що скупчені у згладженій вершині вуглецевого наноконуса, а фактично перераховує кількість семикутних дефектів, що скупчені у згладженій вершині сідловидного вуглецевого наноконуса.

У третьому підрозділі першого розділу обговорюється загальна тематика досліджень фізичних ефектів у двовимірних квантових (квазі)релятивістських ферміонних системах з топологічним дефектом у вигляді магнітного вихра. З’ясовані питання, що залишились не вирішеними, окреслені напрями досліджень у дисертаційній роботі.

У другому розділі “Квантові релятивістські ферміонні системи з вихровим дефектом” викладено основні методи і розроблено загальну методику проведення дисертаційних досліджень.

В першому підрозділі другого розділу застосовується формалізм квантової теорії поля до релятивістських ферміонних систем при скінченній температурі, що дозволяє визначити середні значення спостережуваних, флуктуації та кореляції в цих системах. Показана необхідність перенормування взаємодії із зовнішнім полем і розкрита роль спектральних густин, що відповідають різним середнім, флуктуаціям та кореляціям.

У другому підрозділі другого розділу розглядається двовимірна система у зовнішньому полі топологічного дефекту у вигляді точкового магнітного вихра, що задається векторним потенціалом.

У третьому підрозділі другого розділу проведено самоспряжене розширення гамільтоніана Дірака і знайдено сукупність граничних умов, що дозволяють нерегулярну поведінку розв’язку рівняння Дірака. Ця сукупність параметризується значеннями дійсної неперервної величини, яка, власне, і називається параметром самоспряженого розширення.

У четвертому підрозділі другого розділу обговорюються особливості ультрателятивістської границі, актуальність якої зумовлена лінійністю квазірелятивістського спектру графену. В останньому підрозділі підсумовуються результати розділу.

У третьому розділі “Подрібнення кутового моменту двовимірного релятивістського фермі-газу з магнітним вихром” розглядаються температурні ефекти в індукуванні спіну, орбітального та повного кутових моментів топологічним дефектом у вигляді точкового магнітного вихра.

В першому підрозділі третього розділу обговорюються дві альтернативні можливості (канонічного чи кінетичного) означення в квантовій механіці кутового моменту зарядженої частинки в зовнішньому полі магнітного вихра.

У другому підрозділі третього розділу введені оператори спіну, орбітального та повного кутового моменту у вторинно квантованій теорії, що відповідає двовимірному релятивістському фермі-газу з точковим магнітним вихром.

У третьому підрозділі третього розділу розглядається ядро резольвенти діраківського гамільтоніана такої системи. Показано, що поряд із регулярними радіальними компонентами ядра резольвенти існують також і нерегулярні в точці вихра радіальні компоненти, і визначена гранична умова для нерегулярних компонент, яка містить параметр самоспряженого розширення діраківського гамільтоніана. Наведено явний вигляд усіх радіальних компонент ядра резольвенти.

Четвертий підрозділ третього розділу присвячений аналізу спектральних густин, що визначатимуть температурні характеристики спіну, орбітального та повного кутових моментів. Грунтуючись на результатах попереднього підрозділу, показано, що спектральні густини складаються з двох частин: екстенсивної, тобто залежної від розмірів системи, і розбіжної, коли ці розміри прямують до нескінченності, та інтенсивної, тобто не залежної від розмірів системи, і, отже, скінченої у випадку нескінченних розмірів. Екстенсивна частина визначається виключно внеском ідеального газу і тому не залежить від величини потоку магнітного вихра, а інтенсивна частина визначається перенормованим внеском взаємодії з вихром і залежить періодично від величини потоку вихра.

У п’ятому підрозділі третього розділу ці результати використовуються для одержання температурних середніх спіна, орбітального та повного кутових моментів. Ці середні залишаються незмінними при переході до еквівалентних представлень алгебри Кліфорда і змінюють знак на протилежний при переході до нееквівалентного представлення. Спін та повний кутовий момент складаються з двох частин: одна, що не залежить від вихрового потоку, зростає зі зростанням розмірів системи, і друга, що залежить періодично від величини вихрового потоку, залишається скінченною зі зростанням розмірів системи.

Шостий підрозділ третього розділу займає ключове місце в третьому розділі, оскільки в ньому розглядаються температурні квадратичні флуктуації спостережуваних, що зберігаються, та температурні кореляції між спостережуваними, що зберігаються і не зберігаються. Показано, що ці температурні характеристики залишаються незмінними при переході до будь-якого іншого (еквівалентного чи нееквівалентного) представлення алгебри Кліфорда. Зокрема для квадратичної флуктуації повного кутового моменту отриманий вираз тут, де два значення параметра відповідають двом нееквівалентним незвідним представленням алгебри Кліфорда у 2+1-вимірному просторі-часі. Також отримані вирази для кореляцій повного кутового моменту зі спіном та орбітальним кутовим моментом. Узагальнюючи ці результати, можна зазначати, що кореляції і флуктуація складаються з двох частин: одна, що не залежить від вихрового потоку, зростає зі зростанням розмірів системи, і друга, що залежить періодично від величини вихрового потоку, залишається скінченною зі зростанням розмірів системи. Показано, що скінченні частини виражаються через кореляції відповідних спостережуваних з ферміонним числом.

В сьомому підрозділі третього розділу , грунтуючись на результатах щодо квадратичної флуктуації повного кутового моменту і кореляції повного кутового моменту з ферміонним числом, показана неприйнятність канонічного означення кутового моменту.

У восьмому підрозділі третього розділу підводяться підсумки дослідження подрібнення кутового моменту в релятивістському фермі-газі з магнітним вихром. Встановлено, що в залежності від вибору граничної умови у місці магнітного вихра вакуумне значення повного кутового моменту може бути або точно спостережуваним в окремому квантовому вимірюванні, або результатом усереднення по багатьох квантових вимірюваннях.

Четвертий розділ “Електронні властивості двовимірних графітових наноструктур з топологічними дефектами” присвячений дослідженню графену з дисклинаціями, що приводять до скручення графітового листа в наноконус.

У першому підрозділі четвертого розділу , який має характер вступу до цієї теми, обговорюється питання вибору представлення алгебри Кліфорда для хвильової функції, що описує електронні збудження в графені. Наводиться явний вигляд двох представлень – стандартного планарного та кірального планарного. Вводиться поняття псевдоспіну, з використанням якого можна здійснювати повороти на площині графітового листа. Комбіноване перетворення, що складається з повороту на 180° і взаємозаміни двох підграток та, одночасно, двох нееквівалентних точок Фермі, зберігає симетрію графітового листа і може розглядатися як перетворення парності для графену. Знайдено явний вигляд оператора, що здійснює взаємозаміну підграток та точок Фермі і комутує з одночастинковим гамільтоніаном електронних збуджень.

Топологічний дефект у графені проявляється у скрученні графітового листа в конус і у граничній умові, якій задовольняє електронна хвильова функція на графітовому наноконусі.

При подвійному обході навколо вершини таке переплутування знімається, оскільки. Тому цю умову можна характеризувати, як умову типу листа Мебіуса, для якого потрібен подвійний обхід, щоб повернутися в початкову точку. Здійснюючи сингулярне калібровне перетворення, отримуємо хвильову функцію, що задовольняє тій же умові, що й за відсутності дефекту

Як видно, виникає подовжена (коваріантна) похідна по кутовій змінній, і, отже, з’являється векторний потенціал з відмінною від нуля та не залежною від координат кутовою компонентою. Такий потенціал схожий на потенціал магнітного вихра, однак суттєва відмінність полягає в наявності матриці, яка відмінна від одиничної, але комутує з та і має слід, рівний нулю. Тому конфігурація поля, якій відповідає векторний потенціал, називатиметься нами псевдомагнітним вихром; зауважимо, що потік псевдомагнітного вихра пов’язаний з дефіцитом кута графітового наноконуса. Отже, головний висновок цього підрозділу полягає в тому, що топологічний дефект у графені описується псевдомагнітним вихром з потоком крізь вершину конуса з дефіцитом кута.

У четвертому підрозділі четвертого розділу показано, що у випадках дисклинацій з трьох і більше п’ятикутників () гамільтоніан Дірака–Вейля є суттєво самоспряженим. Як наслідок, густина станів є парною функцією енергії, і заряд основного стану дорівнює нулю, як і у випадку графену без дисклинацій.

П’ятий підрозділ четвертого розділу присвячений аналізу випадків дисклинацій з менш ніж трьома п’ятикутниками та з від одного до трьох і шістьма семикутниками, коли гамільтоніан Дірака–Вейля не є суттєво самоспряженим, а його самоспряжене розширення параметризується однією дійсною неперервною величиною. Знайдена повна система розв’язків рівняння Дірака–Вейля та визначено ядро резольвенти гамільтоніана Дірака–Вейля в цих випадках. Показано, що у випадках дисклинацій з одним п’ятикутником, одним семикутником та трьома семикутникам густина станів може мати не парну по енергії частину; зокрема, поблизу рівня Фермі () густина станів може бути розбіжною.

В шостому підрозділі четвертого розділу завершується побудова теорії електронних властивостей графену з дисклинаціями. Обчислений заряд основного стану графену у випадках дисклинацій з усіма можливими кількостями (від одного до п’яти) п’ятикутників та дисклинацій з від одного до трьох та шістьма семикутниками. Показано, що тільки у випадках дисклинацій з одним п’ятикутником (), одним семикутником () та трьома семикутниками () заряд основного стану графену може бути відмінним від нуля і цілочисельним, задовольняючи наступному співвідношенню

К-во Просмотров: 146
Бесплатно скачать Реферат: Застосування теоретико-польових методів до низькорозмірних квантових систем при скінченній температурі