Шпаргалка: Шпаргалки по медицине
- центросома
- лизосомы
- нейрофибриллы
- нейротугулы
- Нейролемма кроме обычного для всех типов клеток строения, обладает особенностями, присущими только нейрону:
- Наличие специфических ионных каналов, которые обеспечивают перемещение ионов калия, натрия, хлора, кальция внутрь клетки и за её пределы. Этим обеспечивается одно из основных свойств нейрона - способностью к возбуждению. Этим обусловлены также процессы реполяризации и деполяризации, проведение нервного импульса по нервному волокну и передача сигнала от одной нервной клетки к другой.
- В цитоплазме нейронов хорошо развиты клеточные органоиды, это обусловлено синтетической активностью нейрона.
- В нейронах, вокруг ядра, располагается аппарат Гольджи, он в виде корзинки охватывает ядро.
- Специфическими структурами нервной клетки является тигроидное вещество и нейрофиблриллы. Тигроидное вещество (вещество Нисля), сконцентрировано в теле нейрона и в основании дендритов. В световом микроскопе тигроид представляет собой глыбки и зерна. Они придают цитоплазме пятнистый вид. Тигроидное вещество принадлежит эндоплазматической сети, здесь формируются канальца. На шероховатой эндоплазматической сети нейрона содержатся рибосомы, при функциональных нагрузках, в цитоплазме нейрона резко увеличивается количество тигроидного вещества, что свидетельствует о высокой синтетической активности нервной клетки. При функциональной перегрузке нейрона и его истощении, количество тигроида резко уменьшается, причем, вначале исчезает тигроид дендритов, в затем, в телах нейронов, все это даёт основание оценивать состояние нейрона по количеству тигроида.
Нейрофибриллы – это специфические структуры нейрона. На гистологическом препарате они видны в виде тонких нитей в отростках и теле нейрона. Этот тонкие фибриллярные структуры из трубочек, диаметром 200-300 ангстрем*. Нейрофибриллы часто образуют густую сеть, которая наиболее выражена в отростках. Однако в некоторых нейронах нейрофибрилламенты образуют не сеть, а пучки. Распределение нейрофилламентов в нейроне в значительной мере связано с функциональным состоянием нервной клетки. Известно, что в нейронах бешеных животных, нейрофилламенты образуют пучки, такое же распределение нейрофилламентов обнаружено у животных в спячке, поэтому, состояние нейрофилламентов не может быть специфическим показателем какого-то состояния. Предполагают, что функция нейрофилламентов связана с проведением возбуждения.
Нейросекреторные клетки
Функциональные возможности организма обеспечивают взаимодействие 2-х систем: нервной и гуморальной. Возможности таких взаимоотношений этих 2-х систем могут осуществляться благодаря наличию в межуточном мозге нейросекреторных клеток . Последние обладают способностью выполнять функции нервных клеток и секреторных клеток.
Будучи нервными клетками, они воспринимают сигнал, обрабатывают его и передают другим клеточным структурам. Однако, в отличие от нервных клеток, нейросекреторные клетки способны синтезировать и секретировать различные гормоны – нейрогормоны ; они являются веществами белковой природы, и работа нейросекреторных клеток осуществляется циклично. Поленов выделил в функции нейросекреторных клеток 3 фазы:
фаза накопления
фаза синтеза
фаза опустошения
Эти фазы меняют друг друга, после последней фазы, гранулы нейрогормонов выводятся в кровь и в ликвор (спинномозговую жидкость). Нейрогормоны регулируют функции эндокринных желез, которые, в свою очередь, выбрасывают гормоны в кровь и осуществляют регуляцию активности различных органов и систем.
Объединение нервных эндокринных механизмов регуляции осуществляется на уровне гипоталамуса и гипофиза. Гипоталамус – это высший вегетативный центр. Здесь находятся нейросекреторные ядра нейросекреторных клеток, которые функционально связаны между собой. В медиа-базальной области гипоталамуса синтезируются и секретируются 2 группы нейрогормонов: либирины и статины . Эти нейрогормоны по портальной системе попадают в гипофиз. Либирины активируют функцию нейросекреторных клеток гипофиза, а статины – уменьшают. Попав в гипофиз, либирины активируют синтез тропных гормонов гипофиза. Тропные гормоны попадают в общий ток крови, разносятся по всему организму и находят свои «мишени» на соответствующих эндокринных железах. Например: адренокортикотропный гормон (АКТГ) находит свои «мишени» в корковой части надпочечников и активирует синтез и секрецию корковым веществом надпочечников стероидных гормонов. Тириотропный гормон (ТГ) находит свои «мишени» на щитовидной железе. Лютенизирующий гормон (ЛГ) и фолликулостимулирующий гормон (ФСГ), находит свои мишени в половых железах и т.д.
Под действием тропных гормонов активируется синтез гормонов периферическими железами. Однако между гипоталамусом, гипофизом и периферическими железами существует не только прямая, но и обратная связь. К примеру: под действием тириотропных гормонов (ТГ), активируется щитовидная железа, которая синтезирует и секретирует в кровь тироксин. Уровень тироксина в крови анализируется специальными клетками гипоталамуса, которые, в свою очередь, превышают секрецию либиринов и статинов.
Нейроглия
В отличие от нервных клеток, глиальные клетки обладают большим разнообразием. Их количество в десятки раз превышает количество нервных клеток. В отличие от нервных клеток, глиальные способны делиться, их диаметр значительно меньше диаметра нервной клетки и составляет 1,5-4 микрона.
Долгое время считали, что функция глиоцитов несущественна, и они выполняют лишь опорную функцию в нервной системе. Благодаря современным методам исследования, установлено, что глиоциты выполняют ряд важных для нервной системы функций:
опорная
разграничительная
трофическая
секреторная
защитная
Среди глиоцитов, по морфологической организации, выделяют ряд типов:
эпендимоциты