Шпаргалка: Шпоры по БИОЛОГИИ

Энергетический обмен или диссимиляция представляет собой совокупность реакций расщепления органических веществ, сопровождающейся выделением энергии. В зависимости от среды обитания диссимиляция может протекать в 2-3 этапа. У аэробных в 3 этапа: 1) Подготовительный 2) безкислородный 3) кислородный. У анаэроюных в два этапа. 1) Подготовительный . Заключается в ферментативном расщеплении сложных органических соединений на более простые (белки – аминокислоты, жиры – глицерин + жирные кислоты, полисахариды – моносахариды и т.д.) Распад этих сложных субстрактов осуществляется на различных уровнях желудочно-кишечного тракта. Внутреклеточное расщепление органических веществ происходит под действием ферментов лизосом. Высвобождающая при этом энергия рассеивается в виде теплоты, а образовавщиеся малые молекулы могут подвергаться дальнейшему расщеплению или использоватся как строительный материал. 2) Бескислородный . Осуществляется непосредственно в цитоплазме клетки. В присутствии кислорода не нуждается и заключается в дальнейшем расщеплении органических субстратов. Главными источниками энергии в клетке является глюкоза. Безкислородное неполное расщепление глюкозы называется гликолизом. Это многоступенчатый ферментативный процесс превращения 6 углеродной глюкозы в молекулы пировиноградной кислоты. C6 H12 O6 – 2C3 H4 O3 . В ходе р-ции гликолиза выделяется большое количество энергии (200 кДж/моль). 60% рассеивается в виде теплоты, 40% идет на синтез АТФ. В результате гликолиза из одной молекулы глюкозы образуется: 2 молекулы ПВК, 2 АТФ и 2 воды, а также атомы водорода, которые запасаются клеткой в форме НАДФ. C6 H12 O6 +2АДФ + 2Ф+2НАД – 2C3 H4 O3 +2АТФ+2Н2 О +2НАДФ*Н. 3) Полное окисление . Полное окисление проходит на внутренней мембране митохондрий и в матриксе под действием многочисленных ферментов крист. Полное окисление состоит из 3 стадий: 1) окислительное декарбоксилирование ПВК, 2) цикл трикарбоновых кислот (цикл Кребса), 3) заключительный этап – электротранспортная цепь. 1) ПВК поступает в митохондрию, где она

полностью окисляется аэробным путем. Сначала происходит окислеине ПВК, т.е. отщепление СО2 с одновременным окислением путем дегидрирования. Во время этих реакций ПВК соединяется с в-вом которое называют коферментом А. Затем образуется ацетилкофермент А, который за счет выделившецся энергии вовлекается в цикл трикарбоновых кислот. 2) Назван в честь открывшего его английского ученого Ганса Кребса. Он представляет из себя последовательность реакции в ходе которых из одной молекулы S KoA образуется 2 молекулы CO2 , молекула АТФ, 4 пары атомов водорода, которые передаются на молекулы переносчики. 3) Белки переносчики транспортируют атомы водорода к внутренней мембране митохондрий, где передают их по цепи встроенных в мембрану белков. Затем водород соединяется с CO2 . В результате образуется вода. Кислород создает разность потенциалов в мембране. При этом энергия ионов водорода используется для превращения АДФ в АТФ.

2.Характеристика биологии в додарвинский период.

В додарвиновский период (до 1859г.) в естествознании господствовали метафизические взгляды на природу, которые рассматривали явления и тела природы как раз и навсегда данные, неизменные, изолированные и не связанные между собой. Эти представления были тесно связаны с креационизмом (лат. Creatio – сотворение) и теологией (греч. Teos – Бог, logos – слово, учение, наука) которые рассматривают многообразие органического мира как результат творения его Богом. Креационисты (К. Линей, Ж. Кювье) доказывали, что виды живой природы реальны и неизменны со времени своего появления, при этом К. Линей утверждал, что видов существует столько, сколько их было создано во время «творения мира». К концу 18 века в биологии накопился огромный описательный материал, показавший, что: 1)даже внешне очень далекие виды по внутреннему строению обнаруживают определенные черты сходства; 2)современные виды отличаются от давно живших на земле ископаемых; 3)внешний вид, строение и продуктивность с/х растений и животных могут существенно изменятся с изменением условий их выращивания и содержания. Появившиеся сомнения в неизменяемости видов привели к возникновению

трансформизма – системы взглядов об изменяемости и превращении форм растений и животных под влиянием естественных причин. И хотя трансформисты, наиболее яркими представителя которых были Ж.А. Бюффон, К.Ф. Рулье, Эразм Дарвин, А. А. Кавезнев, были далеки от понимания развития природы как исторического процесса, однако их деятельность способствовала зарождению эволюционной идеи. 3.Состав, строение и свойства костей. Тип соединения костей.

В организме человека насчитывается около 200 костей, у взрослого человека 18%, а у новорожденного 14% от общей массы. Каждая кость – это сложный орган состоящий из: костной ткани, подкостницей, костного мозга, кровеносных и лифатических сосудов, нервов. Кость – это соединительная ткань состоящая из клеток, которые погружены в твердое основное вещество. Примерно 30% основного в-ва образовано органическими соединениями (оссеин, коллагенные волокна), 70% - неорганические в-ва: Na, Ca, Mg, Cl, F, карбонаты и цитраты. Морфологическая ткань представлена костными клетками, - остеобластами. Они имеют множество вырастов и расположены в межклеточном веществе в состав которого входят коллогеновые волокна и мин. в-во. Остеобласты находятся в гранулах распределенных по всему основному веществу. Они откладывают неорганическое вещество кости. Промежутки между остеобластами заполнены вставочными пластинками. Из остеобластов и вставочной пластинки состоят более крупные элементы кости перекладины. Если перекладины лежат плотно, то образуется компактное вещство кости, а если между перекладинами имеется пространство, то образуется губчатое вещство. Губчатое вещство образовано очень тонкими, костными перекладинами которые ориентированы паралельно линиями основных напряжений, а это позволяет кости выдерживать большую нагрузку. Компактное вещество имеет пластинчатое строение напоминающее систему вставленных друг в друга цилиндров – это придает кости легкость и крепкость. Костные пластинки – это межклеточное вещество ткани, а клетки лежат между пластинками костного в-ва. Надкостница – это тонкая соед. тканная оболочка.

Соединение костей. Соединение костей обеспечивает либо подвижность, либо устойчивость частей скелета как механической структуры. Различают следующие виды соединений костей: В зависимости от этого соединение делят на 2 группы: 1) непрерывные 2) прерывистые 3) промежуточная форма или переходная является полусустав или симфоз. К нему относятся почти неподвижные лобковые сращения, где соединение происходит пр помощи хряща внутри которого имеется небольшая полость. Непрерывное соединение делят на 3 группы: 1) волокнистые соединения при помощи соединительной ткани, образующей межкостные перегородки, связки и межкостные швы. 2) хрящевые соединения, образованные прослойками из хрящевой ткани 3) соединение костей, с помощью костной такни, или костное сращение 4) прерывистые соединения.

1.Клеточная теория. История создания, основные положения.

История изучения клетки тесно связана с изобретением микроскопа. Первый микроскоп появился в Голландии в конце XVI столетия. Известно что он состоял из трубы и 2 увеличительных стёкол. Первый кто понял и оценил огромное значение микроскопа, был английский физик и ботаник Роберт Гук. Изучая срез приготовленный из пробки, Р. Гук заметил, что в состав её входит множество очень мелких образований, похожих по форме на ячейки. Он назвал их клетками. Этот термин утвердился в биологии, хотя Р. Гук видел не клетки, а их оболочку. Затем Антон ван Левенгук усовершенствовал микроскоп. 1831 г Роберт Броун – впервые описал ядро, 1838-39 годы Матиас Шлейдер – выявил, что ядро является обязательным компонентом всех живых клеток. Теодор Шванн – сопоставил животную и растительные клетки и установил что они сходны. Основные положения клеточной теории по Т. Шванну: 1. Все организмы состоят из одинаковых частей клеток; они образуются и растут по одним и тем же законам. 2. Для элементарных частей организма общий принцип развития – клеткообразование. 3. Каждая клетка в определенных границах есть индивидум, некое самостоятельное целое. Все такни состоят из клеток. 4. Процессы возникающие в клетках растений, могут быть сведены к следующему: а) возникновение клеток; б) увеличение клеток в размере; в) превращение клеточного содержимого и утолщение клеточной стенки. М. Шлейден и Т. Шванн ошибочно считали, что клетки в организме возникают путем новообразования их первичного

неклеточного вещества. Это представление было отвергнуто немецким ученым Рудольфом Вирховым. Он сформулировал в 1859 г. теорию: «Всякоя клетка происходит из другой клетки». Основные положения клеточной теории: 1. Клетка – элементарная живая система, основа строения, жизнедеятельности, размножения и индивидуального развития прокариот и эукариот. Вне клетки жизни нет. 2. Новые клетки возникают только путем деления ранее существующих клеток. 3. Клетки всех организмов сходны по строению и химическому составу. 4. Рост и развитие многоклеточного организма – следствие роста и размножения одной или нескольких исходных клеток. 5. Клеточное строение организмов – свидетельство того, что всё живое имеет единое происхождение.

2.Численность популяций, управление численностью (колебание численности, гомеостаз).

Размеры популяций (пространственные и по числу особей) подвержены постоянным колебаниям. Периодические колебания численности популяции называют волнами жизни или популяционными волнами. Причины этих колебаний различны и в общей форме сводятся к влиянию биотических и абиотических факторов (враги, микроорганизмы вызывающие заболевания, запас пищи, влага, свет, температура, конкуренты, стихийные бедствия и т.д.). Например, осенью число кроликов было 10000, а после зимы их осталось 100. С изменением особей в популяции изменяется их плотность, т.е. число особей на единицу площади. Верхний предел плотности популяций определяется количеством самого дефицитного ресурса. Устойчивость популяции поддерживается

исторически сложившимися способами самовоспроизведения благодаря смене поколений и способности к саморегуляции путем изменения своей структуры. Например, популяция жука хрущака, при увеличении численности популяции самцы поедают яйца. У некоторых видов увеличение популяции вызывает резкое сокращение или вообще временную утрату способности давать потомство. У видов растений, не имеющих специальных приспособлений для распространения семян на большое расстояние, часто возникает состояние перенаселенности. В этих случаях уменьшается размер растений. В этого чем больше популяция, тем меньше семян, что приводит к увеличению численности популяции.

3.Теплорегуляция человеческого организма. Закаливание. Приемы закаливания.

1.Терморегуляция. Под терморегуляцией понимают совокупность физиологических и психофизических механизмов и процессов, деятельность которых направлена на поддержание относительного постоянства объёма тела. Сначала происходит восприятие и отдача температуры. Любая клетка в определенной степени обладает определенной чувствительностью, но есть особые мерные клетки, которые особенно реагируют на температуру, эти клетки называются терморецепторами. Терморецепторы находятся в коже, мышцах, сосудах, воздухоносных путях, спинном мозге. Поток нервных импульсов от переферических терморецепторов поступает через задние корешки спинного мозга к вставочным нейронам. Затем этот поток импульсов достигает ядер таламуса. Эта часть температурного анализатора обеспечивает

температурные ощущения (холодно, жарко и т.д.) на их основе формируется терморегуляция. 2. Центральный механизм регуляции теплообмена. Регуляция теплообмена и температуры тела осуществляется центром терморегуляции, который расположен в гипоталамусе. Термочувствительные клетки измеряют температуру артериальной крови протекающей через мозг, они способны различить разницу в 0,0110 . Поток нервных импульсов от терморецепторов кожи, внутренних органов, спинного мозга и т.д. поступает в область гипоталамуса. На основании всей этой информации осуществляется контроль за температурой тела. 3. Поддержание температур

К-во Просмотров: 265
Бесплатно скачать Шпаргалка: Шпоры по БИОЛОГИИ