Шпаргалка: Высшая математика

Теорема. Любое непустое ограниченное сверху (снизу) числ. мн-во имеет точную верх(ниж) грань.

Таким образом у огран. мн-ва обе грани $, док-во основано на непрерывности мн-ва действит. чисел.

3. Числовые последовательности

Если для каждого нат. числа n определено некоторое правило сопоставляющее ему число xn, то мн-во чисел х1,х2, … ,хn, … наз-ся числовой последовательностью и обозначается {xn}, причем числа образующие данную посл-ть наз-ся ее эл-ми, а эл-т хn общим эл-том посл-ти .

!Порядок следования эл-тов оч. важен, перестановка хотя бы 2-х эл-тов приводит к др. посл-ти.

Основные способы задан. посл-ти:

а) явный, когда предъявляется ф-ла позволяющая по заданному n вычислить любой эл-т n, т.е. xn=f(n), где f- некоторая ф-ция нат. эл-та.

б) неявный, при котором задается некоторое рекуррентное отношение и несколько первых членов посл-ти.

Пример:

а) xn=5nx1=5, x2=10

б) x1=-2 xn=4n-1 –3, n=2,3… х2=-11, х3=-47

Ограниченные последовательности(ОП)

Посл-ть { xn } наз-ся огран. сверху(снизу), если найдется какое-нибудь число {xn} M(m) xn£M"n (xn³m"n) посл-ть наз-ся огранич., если она огранич. сверху и снизу.

Посл-ть { xn } наз-ся неогранич ., если для любого полного числа А сущ-ет эл-т хn этой посл-ти, удовлетворяющий неравенству ½xn½>А.

Сходящиеся и расходящиеся посл-ти

Св-ва сходящихся посл-тей

Теорема «Об единственности пределов»

Теорема «Сходящаяся посл-ть ограничена»

Теорема «О сходимости монотон. посл-ти»

4. Сходящиеся и расходящиеся посл-ти

Большое внимание уд-ся выяснению вопроса: обладает ли данная посл-ть сл-щим св-вом (сходимости) при неогранич. Возрастании номеров посл-ти эл-ты посл-ти сколь угодно близко приближаются к некоторому числу а или же этого св-ва нет.

Опр Если для любого e >0 найдется такой номер N , для любого n > N : ½ xn - a ½ < e

Все посл-ти имеющие предел наз-ся сходящимися , а не имеющее его наз-ся расходящимися.

Связь сходящихся посл-тей и б/м.

Дает сл. теорему

Теорема Для того чтобы посл-ть xn имела пределом число а необходимо, чтобы эл-ты этой посл-ти можно было представить в виде xn=a+an, где посл-ть {an}®0, т.е. является б/м.

Док-во

а) Допустим, что xn®a и укажем посл-ть an удовл. равенству xn=a+an. Для этого просто положим an=xn-a, тогда при n®¥½xn-a½ равно растоянию от xn до а ® 0 => an б/м и из равенства преобразования определяю an получаем xn=a+an.

Свойство б/м

К-во Просмотров: 963
Бесплатно скачать Шпаргалка: Высшая математика