Статья: Анализ и решение проблемы переноса энергии волнами электромагнитного поля
Объективность существования указанного четырехкомпонентного вихревого поля иллюстрируется нетривиальными следствиями из полученных выше соотношений, поскольку подстановки (5c) в (5b) и (5d) в (5a) приводят к системе новых электродинамических уравнений, структурно полностью аналогичной системе традиционных уравнений Максвелла (1), но уже для поля ЭМ векторного потенциала с электрической и магнитной
компонентами:
(a) , (b)
, (6)
(c) , (d)
.
Чисто вихревой характер компонент поля векторного потенциала обеспечивается условием кулоновской калибровки посредством дивергентных уравнений (6b) и (6d), которые при этом представляют собой начальные условия в математической задаче Коши для уравнений (6a) и (6c), что делает эту систему уравнений замкнутой.
Соответственно, математические операции с соотношениями (5) позволяют получить [3] еще две других системы уравнений:
для электрического поля с компонентами и
(a) , (b)
, (7)
(c) , (d)
,
и для магнитного поля с компонентами и
:
(a) , (b)
, (8)
(c) , (d)
.
Кстати, если считать соотношения (5) исходными, то из них подобным образом следуют и уравнения системы (1), справедливые для локально электронейтральных сред (). Таким образом, система уравнения (5) первичной взаимосвязи компонент ЭМ поля и поля ЭМ векторного потенциала, безусловно, фундаментальна.
Далее, как и должно быть, из этих систем электродинамических уравнений непосредственно следуют (аналогично выводу формулы (2)) соотношения баланса:
судя по размерности, для потока момента ЭМ импульса из уравнений (6)
(9)
для потока электрической энергии из уравнений (7)
(10)
и, наконец, для потока магнитной энергии из уравнений (8)
. (11)
Все это действительно подтверждает и объективно доказывает, что, наряду с ЭМ полем с векторными компонентами и
, в Природе существуют и другие поля: поле ЭМ векторного потенциала с компонентами
и
, электрическое поле с компонентами
и
, магнитное поле с
и
. Следовательно, структура конкретного электродинамического поля из двух векторных взаимно ортогональных компонент реализует способ его объективного существования, делает принципиально возможным его перемещение в пространстве в виде потока соответствующей физической величины.
Можно убедиться, следуя логике рассуждений вывода волнового уравнения для поля электрической напряженности , что форма и структура представленных систем уравнений (1), (6)-(8) говорят о существовании волновых решений для всех четырех компонент реального электромагнитного поля. Тем самым описываются волны конкретных вышеперечисленных двухкомпонентных полей посредством одной из парных комбинаций четырех указанных волновых уравнений. В итоге возникает физически очевидный вопрос: что это за волны, и каковы характеристики их распространения?
Поскольку структурная симметрия уравнений систем (1) и (6) математически тождественна, а волновые решения уравнений (1) выше уже проанализированы, то далее анализ условий распространения плоских электродинамических волн в однородных изотропных материальных средах проведем, прежде всего, для уравнений систем (7) и (8). Их необычные структуры между собой также тождественны, а волновые решения уравнений в традиционной литературе не рассматривались.
Итак, рассмотрим волновой пакет плоской линейно поляризованной электрической волны с компонентами и
для системы (8) либо магнитной волны с компонентами
и
для системы (9), которые представим комплексными спектральными интегралами. Тогда, проводя аналогичные рассуждения, как и для рассматриваемого выше пакета плоской ЭМ волны, получим соотношения для волн электрического поля
и
. Соответственно, для волн магнитного поля
и
. Таким образом, для обеих систем (8) и (9) имеем общее для них выражение:
.
В конкретном случае среды идеального диэлектрика () из
с учетом формулы
следует обычное дисперсионное соотношение
[1], описывающее однородные плоские волны электрического или магнитного полей. При этом связь комплексных амплитуд компонент указанных волновых полей имеет специфический вид:
и
.
Специфика состоит в том, что при распространении в диэлектрической среде компоненты поля сдвинуты между собой по фазе на , то есть характер поведения компонент поля такой волны в любой точке пространства аналогичен кинематическим параметрам движения (смещение и скорость) классической частицы в точке устойчивого равновесия поля потенциальных сил. Конечно, данный результат математически тривиален, поскольку компоненты ЭМ поля и поля ЭМ векторного потенциала связаны между собой посредством производной по времени (см. соотношения (5)). Однако концептуально, с физической точки зрения такой факт весьма примечателен.
Справедливости ради уместно сказать, что впервые о реальности магнитной поперечной волны с двумя ее компонентами и
, сдвинутыми при распространении по фазе колебаний на
, еще в 1980 году официально заявил в виде приоритета на открытие Докторович [5], и свое заявление он с удивительным упорством, достойным лучшего применения, безуспешно пытается донести до других все эти долгие годы. Весьма печально, ибо только Время – высший судья, и именно оно расставит всех по своим местам!
Полностью аналогичные рассуждения для пакета плоской волны векторного потенциала с компонентами и
в системе (7) дают
и
, откуда снова получаем известное выражение
А потому для среды идеального диэлектрика (
) дисперсионное соотношение для уравнений (7) есть
при комплексных амплитудах в волновых решениях этой системы:
, где сами решения описывают плоские однородные волны, компоненты поля которых, как и в случае ЭМ волн, синфазно (
) распространяются в пространстве.
Как видим, именно уравнения поля ЭМ векторного потенциала (6) описывают волны, переносящие в пространстве поток момента импульса, которые со времен Пойнтинга безуспешно пытаются описать с помощью уравнений ЭМ поля (1) (см. анализ в [5]). В этой связи укажем на пионерские работы [6], где обсуждается неэнергетическое (информационное) взаимодействие векторного потенциала со средой при передаче в ней потенциальных волн и их детектирование с помощью эффекта, аналогичного эффекту Ааронова-Бома.