Статья: Диэлектрическая релаксация и подвижность мезогенных групп в холестеринсодержащих жидкокристаллических полимерах с развязками различной длины
Можно предположить, что такие закономерности, как кривизна зависимости процессов I и II по температурно-частотным координатам (показано для ПХМ-5 на рис. 3) и затем диэлектрическое проявление перехода из ЖК-состояния в изотропное, являются характерными для полимеров с мезогенными группами в боковых цепях. Подобного рода наблюдения были сделаны для полимеров с силоксановым хребтом макроцепи [6—8], для полиакрилатов и метакрилатов с другими типами мезогенных групп-[9,10].
В работах [6—8] происхождение процессов с признаками, аналогичными процессам I и II данной работы, связывали с ориентационными поворотами анизодиаметрической мезогенной группы, в результате которых происходила ориентация параллельной μ и перпендикулярной μх составляющих дипольного момента мезогенной группы. Предположение основано на перенесении механизмов ориентационных процессов в низкомолекулярных жидких кристаллах на мезогенные фрагменты, введенные в полимерные цепи. Эта трактовка может быть использована и для интерпретации сходных переходов в полимерах с холестериновыми мезогенными группами в боковых цепях.
Полярной группой, определяющей и μ и μ± , является группа СОО, примыкающая к холестериновому радикалу. Выше было показано, что она является источником происхождения процесса с очень малыми временами (при низких температурах). Объемный холестериновый радикал в части, примыкающей к СОО, практически лишен внутренних движений и потому, учитывая малые времена, в низкотемпературном локальном движении не участвует. Можно считать, что кинетическая единица низкотемпературного процесса ограничена, с одной стороны, вращением СОО относительно связи 4, а с другой — примыкающими метиленовыми группами из числа (СН2 ).
Участие холестеринового радикала в процессе I доказано путем сопоставления диэлектрических и ЯМР данных для холестеринового эфира поли-метакрилоил-со-аминолауриновой кислоты, а по аналогии и для ПХМ-n. Можно полагать, что процесс I, располагающийся при более низких температурах, следует отождествить с ориентацией μ± второй группы СОО в совокупности с холестериновым радикалом, простейший путь которой осуществляется при вращении относительно связи 3.
Несколько труднее интерпретировать молекулярную подвижность, обусловливающую появление процесса II, лежащего при более высоких температурах. Его характеристики подходят под определение ориентационного движения μ IIмезогенной группы. Кроме того, совпадение его температур с температурой стеклования (таблица), сдвиг области диэлектрических потерь к низким температурам при введении пластификатора [2], высокие значения энергии активации придают сходство с тривиальными дипольно-сегментальными процессами (α-переход), характерными для аморфных полимеров в области стеклообразования.
При рассмотрении представленной альтернативы, по-видимому, полезно учесть дополнительное обстоятельство, отмеченное в работе [11]. Исследуя диэлектрическую релаксацию в сополимерах 1-метакрнлоилокси-бензоил-феннлен-4-анисоата со стиролом, было установлено, что α-переход, связанный со стеклованием, наблюдали только в системах, где количественный состав соответствовал получению аморфных изотропных образцов. Этот процесс исчезал, как только концентрация мезогенного компонента становилась достаточной для реализации ЖК-состояния. α -Переход диэлектрическим методом отчетливо не наблюдался и в ряде других гребнеобразных полимеров, например в поли-1М-октадецилакрил- и метакриламн-дах [3]. В связи с этим можно предположить, что процесс II, лежащий на 20—25 выше, чем процесс I, с близкими для обоих процессов энергиями активации, является следствием ориентациоиного движения μ//. Для осуществления этого движения достаточно предположить наличие внутрицеп-ной корреляции в пределах холестериновый радикал — группа СОО и по крайней мере одна прилежащая группа СН2 . Вращение такой последовательности относительно связей, входящих в полиметиленовую цепочку, обеспечивает изменение ориентации μ//и необходимую пространственную подстройку в реализации ЖК-состояния.
Можно считать, что внутреннее вращение в кинетически гибких цепях, несущих мезогенные фрагменты, способно обеспечить ориентационное движение, характерное для низкомолекулярных жидких кристаллов с анизодиаметричными мезогенными группами. По-видимому, близость координаттакого рода движения к температуре стеклования не случайна, так как движение при этом совершают протяженные участки с корреляцией внутреннего вращения как вдоль боковой цени, так и межцепной (между боковыми привесками), что и объясняет высокие значения активационных величин.
Представления об отнесении процессов I и II в полимерах с мезогенными группами в боковых цепях нуждаются в доказательстве общности этого явления, так как два процесса с признаками, подобными описанным, наблюдались в полимерах с азометиновыми группировками, где перпендикулярная составляющая дипольного момента незначительна и вряд ли может обеспечить столь четко выраженную область диэлектрических потерь, как это наблюдалось в эксперименте [12].
В заключение рассмотрим влияние длины кинетической развязки на проявление описанных закономерностей, связанных с процессами I и II. Как видно из рис. 3, для полимера с развязкой из пяти групп СН2 характерна не только самая высокая температура просветления, но и более высокие температуры и активационные величины процессов I и II. Заторможенность движения соответствующих кинетических единиц эффективно снижается прп переходе к n=10. Дальнейшее удлинение развязки (n=14) существенных изменений в параметрах релаксации не вызывает, можно лишь отметить некоторое сближение процессов.
Таким образом, можно сделать вывод о том, что реализация ЖК-состояния в полимерах, где боковой привесок несет в себе мезогенный фрагмент, определяется условиями внутреннего вращения в боковых цепях, которое способно обеспечить повороты мезогенной группы относительно как продольных, так и поперечных осей.
СПИСОК ЛИТЕРАТУРЫ
1. Freidzvn Ya. S., Kharitonov Л. V., Shibaev V. P., Plate N. A. // Advances in liquidcrystal research and applications/Ed. by Bata L., Budapest. 1980. V. 2. P. 899.
2. Борисова Т. И., Бурштейн Л. Л., Никонорова И. А., Фрейдзоп Я. С, Шибаев В. П., Плат.) Н. А. II Высокомолек. соед. А. 1984. Т. 26. № 7. С. 153.
3. Борисова Т. П., Бурштейн Л. Л., Никонорова И. А., Шибаев В. П. // Высокомолек. соед. А. 1982. Т. 24. № 8. С. 1669.
4. Тальрсзе Р. В., Нараханова Ф. И., Борисова Т. И., Бурштейн Л. Л., Никонорова И. А., Шибаев В. П., Платэ Н. А. // Высокомолек. соед. А. 1978. Т. 20. № 8. С. 1835.
5. Борисова Т. П.. Бурштейн Л. Л., Степанова Т. П., Харитонов А. В., Фрейдзон Я. С, Шибаев В. U. II Высокомолек. соед. А. 1982. Т. 24. № 7. С. 1463.
6.Atlard f. S., Williams G.. Gray G. W., Lacey D., Gemmel P. A. // Polymer. 1986. V. 27. Д2. P. 185.
7. Atlard G. S., Williams G. II Polymer Commims. 1986. V. 27. № 1. P. 2.
8. Atlard C. S. Williams G. II Polymer Commims. 1986. V. 27. № 2. P. 66.
9. Zentel R.. Strobl G.. Rindsdorj H. // Macromolecules. 1985. V. 18. № 5. P. 900.
10. Ringsdorf H., Zentel R. // Makromolok. Chcm. 1982. B. 183. S. 1245.
11. Никонорова H. А., Малиновская В. П., Порисова Т. И., Бурштейн Л. Л., Коршун А. М., Скороходов С. С. II Высокомолек. соед. А. 1987. Т. 29. № 3. С. 549.
12. Борисова Т. И., Бурштейн Л. Л., Никонорова Н. А., Тальрозе Р. В., Шибаев В. П. //Высокомолек. соед. А. 1986. Т. 28. № 11. Р. 2335.