Статья: Электромагнитный векторный потенциал как следствие дуальности параметров частиц микромира

Целесообразно отметить, что сам Максвелл призывал ответственно относиться к математическим операциям над векторами электромагнитного поля и физической трактовке таковых. Вот его слова: “В науке об электричестве электродвижущая и магнитная напряженности принадлежат к величинам первого класса – они определены относительно линии. … Напротив, электрическая и магнитная индукция, а также электрические токи принадлежат к величинам второго класса – они определены относительно площади”. ([6] п. 12). И далее более конкретно: “В случае напряженности следует брать интеграл вдоль линии от произведения элемента длины этой линии на составляющую напряженности вдоль этого элемента. … В случае потоков следует брать интеграл по поверхности от потока через каждый ее элементов”. ([6] п. 14). Не преувеличивая, трактат Максвелла можно назвать физическими основами математического анализа, поскольку в нем свойства используемых математических моделей максимально подчинены стремлению автора адекватно описать физические представления о рассматриваемых явлениях. Однако, к сожалению, в настоящее время даже в учебной литературе повсеместно встречается “” и “”, “” и “”. Такое формальное использование математики попросту игнорирует физическое содержание соотношений электродинамики, создает путаницу физических понятий, мешая действительно разобраться в них. Все это усугубляется применением абсолютной системы единиц СГС, когда безразмерные коэффициенты e0 = 1 и m0 = 1 делают векторы и , и сущностно тождественными, где Эрстед и Гаусс равны в пустоте, а в средах различаются только численно. О предпочтительности в классической электродинамике международной системы единиц физических величин СИ в сравнении с абсолютной системой единиц СГС говорится также в работах [4, 5].

Для нас здесь существенно то, что, согласно Максвеллу, в электродинамике циркуляционные (линейные) векторы и имеют размерность линейной плотности физической величины, а потоковые векторы , и – ее поверхностной плотности. В частности, размерность вектора магнитной индукции равна поверхностной плотности момента импульса на единицу заряда, в системе СИ  Тесла. Экспериментально это ярко иллюстрируется эффектом Эйнштейна-де Гааза [1], где в материальной среде при ее однородном намагничивании возникает механический момент вращения, направленный коллинеарно полю, обусловленный упорядочением собственных магнитных моментов, соответственно, моментов количества движения электронов в атомах вещества среды. Следовательно, поле вектора выявляет в среде момент импульса, порождающий ее вращение. Поэтому, согласно соотношению (2а), размерностью вихревого поля магнитного векторного потенциала следует считать линейную плотность момента импульса на единицу заряда. Итак, в формулах (6) локальной характеристике микрочастицы  моменту импульса на единицу заряда сопоставляется его полевой эквивалент  магнитный векторный потенциал , что дает вторую фундаментальную корпускулярно-полевую пару, которую, например, для электрона  можно записать как с единицами измерения (Джоуль∙секунда)/ Кулон(Джоуль∙секунда)/(Кулон∙метр).

Вернемся к соотношению (3) связи вектора с вектором . Как теперь здесь показано, размерность вихревого поля вектора электрической напряженности однозначно равна линейной плотности момента силы на единицу заряда, что естественно нисколько не опровергает единицу измерения этого вектора Вольт/метр, а лишь уточняет ее физический смысл. Таким образом, в действительности соотношение (3) представляет собой полевой аналог основного уравнения динамики вращательного движения твердого тела в механике, что полностью согласуется с рассмотренными выше корпускулярно-полевыми представлениями.

Подводя итог, с приходим к заключению, что векторные потенциалы – это не математические фикции, а фундаментальные первичные поля, поскольку именно они порождают традиционные вихревые электромагнитные поля в классической электродинамике. Важно при этом подчеркнуть, что с точки зрения проявления физических свойств [4, 5] рассматриваемые потенциалы логично называть поляризационными потенциалами. Установленная здесь принципиальная двойственность физических параметров электрического заряда говорит о реальном существовании «корпускулярно-полевого дуализма» природы электричества, у которого, в отличие от схожего лишь по названию «корпускулярно-волнового дуализма» в квантовой механике, континуальные компоненты являются векторным полем, и он реализуется на микро- и макроуровнях строения материи. Фундаментальность концепции указанного дуализма обусловлена тем, что локальные характеристики микрочастицы (совокупно, и макрообъекта) находятся в неразрывной связи с их собственными полевыми параметрами: электрическому заряду, кратному кванту электрического потока  заряду электрона |e-|, соответствует электрический векторный потенциал , а ее удельному (на единицу заряда) кинетическому моменту, кратному кванту магнитного потока , отвечает магнитный векторный потенциал . В качестве конкретной иллюстрации вышесказанного имеем из (5) и (6) для точечного заряда, например электрона, следующие выражения: и . где и  орты сферической системы координат.

Как видим, полученные результаты представляют общефизический интерес, требуют дальнейшего серьезного развития и, в частности, могут служить вместе с материалом работ [4, 5] непосредственным введением в новую перспективную область исследований связи полей классической электродинамики с микромиром.

Список литературы

1. Матвеев А.Н. Электродинамика. - М.: Высшая школа, 1980. - 383 с.

2. Антонов Л.И., Миронова Г.А., Лукашёва Е.В., Чистякова Н.И. Векторный магнитный потенциал в курсе общей физики / Препринт № 11. - М.: Изд-во МГУ, 1998. - 47 с.

3. Патент РФ № 2101842. Способ обработки субстрата в поле магнитного векторного потенциала и устройство для его осуществления / В. Кропп.

4. Сидоренков В.В. Развитие физических представлений о процессе электрической проводимости в металле // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. - 2005. - № 2. - С. 35-46.

5. Сидоренков В.В. Обобщение физических представлений о векторных потенциалах в классической электродинамике // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. - 2006. - № 1. - С. 28-37.

6. Максвелл Дж. К. Трактат об электричестве и магнетизме. В 2-х томах. - М.: Наука, 1989.

К-во Просмотров: 179
Бесплатно скачать Статья: Электромагнитный векторный потенциал как следствие дуальности параметров частиц микромира