Статья: Исследование диэлектрической релаксации в полимерных полувзаимопроникающих сетках

Зависимость времен релаксации от обратной температуры и энергия активации низкотемпературной области релаксации свидетельствуют о том, что линейный ход lg т для образцов с содержанием 73—50% ППС претерпевает довольно резкое изменение наклона вблизи 230—240 К. Ниже этой температуры наклон lg т=φ(1/Т ), а следовательно, и энергия активации были близки к таковым для β -процесса в ППС (34—36 кДж/моль). Выше указанных температур энергия активации увеличивается до 65—80 кДж/ /моль, принимая, таким образом, промежуточные между а- и β -процессами ППС значения. Следовательно, экспериментальные данные не опровергают предположения о существовании сегрегированной фазы в сетках, содержащих 70% ППС и менее.

Из кривых рис. 1, б и 4, где приведены зависимости tg δMaKC и соответствующей ему температуры Тмакс α- и α1 сопроцессов в ППС при 1 кГц от количественного состава полувзаимопроникающих сеток, можно сделать вывод о качественно различном состоянии в композициях с содержанием ППС больше и меньше 70%. Это следует из резкого исчезновения области cCi-перехода в образцах с 70% ППС и более, относимой к сегментальным процессам в ППС в переходных слоях, где оба компонента можно считать молекулярно совмещенными. Одновременно наблюдается проявление интенсивного α-перехода в сегрегированной фазе ППС, отделенного при 1 кГц от α-области почти на 50°.

Вся совокупность результатов анализа закономерностей диэлектрической релаксации в исследуемых полувзаимопроникающих сетках позволяет утверждать, что в зависимости от содержания ППС фазовая структура может иметь принципиальные различия. При малом содержании ППС полимеризующийся первым с образованием пространственной структуры ПТДИ формирует непрерывную фазу. В сетке ПТДИ дискретно распределены домены ППС, которые, по-видимому, представляют собой ядра чистого компонента с растущим к периферии содержанием элементов цепей ПТДИ (переходный слой). Объем переходных слоев растет пропорционально общему содержанию ППС, так как именно таким образом увеличивается интенсивность диэлектрического α-поглощения, связанного с явлениями в этом слое. Можно полагать, что в образцах с содержанием ППС 35—73% интегральный объем переходного слоя превышает объем сегрегированной фазы ППС.

Концентрация ППС 70—73% является критической в том смысле, что соответствует, по-видимому, инверсии фаз. В образцах с большим, чем 73%, содержанием ППС появление процесса, характерного для сегрегированной фазы ППС, и монотонность концентрационных зависимостей его характеристик при дальнейшем росте содержания этого компонента позволяют считать непрерывной фазу, образуемую сегрегированным ППС. Вкрапленные в нее домены сетчатого ПТДИ, вероятно, захватывают лишь незначительное количество второго компонента, так что диэлектрический метод не обнаруживает присутствия переходных слоев и соответственно ai-процесса. При этом можно полагать, что общий объем переходного слоя в образцах данного состава значительно понизился. Подобные изменения доли переходного слоя во взаимопроникающих сетках с большим и малым содержанием второго компонента наблюдали в работе [12].

Следует отметить, что во всем диапазоне составов плотность рассматриваемых композиций превышает значения, рассчитанные по правилу аддитивности для смесей (рис. 5). Наибольшее отклонение наблюдается для составов с 60—70% ППС. Отклонение концентрационной зависимости р от аддитивной подтверждает наличие молекулярных взаимодействий между цепями обоих компонентов.

Таким образом, с помощью метода диэлектрической спектроскопии, не разрушающего структуру блочных образцов полимерной композиции, получена информация об особенностях молекулярного движения в полувзаимопроникающих сетках и на этой основе сделаны косвенные выводы о структуре и совместимости составляющих ее компонентов.


Литература

1. Hueleck V., Thomas D., Sperling L. Macromolecules, 1972, v. 5, № 4, p. 340.

2. Manson J. A., Sperling L. H. Polymer blends and composites. N. Y.: Plenum Press, 1976.

3. Hueleck V., Thomas D., Sperling L. Macromolecules, 1972, v. 5, № 4, p. 348.

4. Allen G., Bowden N., Lewis G., Blundell D,, Vyvoda I. Polymer, 1974, v. 16, № 1, p. 19.

5. Allen G., Bowden W., Blundell D., Hutchinson F., Jeffs G., Vivoda I. Polymer, 1973, v. 14, № 12, p. 597.

6. Липатов Ю. С. В кн.: Смеси и сплавы полимеров. Киев: Наукова думка, 1978, с. 38.

7. Белоновская Г. П., Андрианова Л. С, Коротнева Л. А., Чернова Ж. Д., Долгоплос В. А. Докл. АН СССР, 1973, т. 212, № 3, с. 615.

8. Belonovskaja G. P., Chernova J. D., Korotneva L. A., Andrianova L. S., Dolgoplosk B. A., Zakharou S. K., Kalninsh К. K., Kaluibnaja L. M., Lebedeva M. F. Europ. Polymer 3., 1976, v. 12, N 5, p. 817.

9. Борисова Т. И., Гладченко С. В., Краснер Л. В., Андрианова Л. С. Высокомолек. соед. Б, 1979, т. 21, № 11, с. 104.

10. Stockmayer W. Н. Pure Appl. Chem., 1967, v. 15, № 2, p. 539.

11. North A. M. Chem. Soc. Rev., 1972, v. 1, p. 49.

12. Липатов Ю. С, Шилов В. В., Богданович В. А., Карабанова Л. В., Сергеева Л. М. Высокомолек. соед. А, 1980, т. 22, № 6, с. 1359.

К-во Просмотров: 114
Бесплатно скачать Статья: Исследование диэлектрической релаксации в полимерных полувзаимопроникающих сетках