Статья: Логика и аналогии в теории эволюции
Геном — структуры, в которых закодирована наследственная информация, но употребление этого термина не очень чёткое: иногда им обозначают только основной набор хромосом (X), иногда — гаплоидный набор (п) или даже диплоидный (2п); говорят также о геноме хлоропластов или митохондрий. Правильнее называть геномом совокупность всех структур, несущих закодированную наследственную информацию.
Очень важно ясно представлять критерий различия генотипа и фенотипа: все структуры организма — это части фенотипа, в том числе и те структуры (ядро, хромосомы, ДНК и РНК), в которых записана генетическая программа. Генотип же — это не структура, а только информация, т. е. некоторое смысловое содержание. Точно так же в книге: бумага и шрифт несут в себе содержание, но сами содержанием книги не являются. Компьютер содержит в себе многообразную информацию, но сам информацией не является. Основываясь на некоторых формальных подходах, можно и к информации, и к различным вещественным структурам приложить единую меру неслучайности, или упорядоченности, например, выразить её в битах. Но отсюда логически не вытекает тождественность понятий „информация“ и „упорядоченность структуры“ — как из того, что количество яблок и гвоздей можно измерить килограммами, не вытекает тождественность яблок и гвоздей. Поэтому нельзя отождествлять процесс извлечения информации, записанной на определённом материальном носителе, с помощью определённого условного кода, с процессом получения информации о некотором объекте в результате исследования его структуры.
Отождествляя информацию со структурой, биолог заходит в тупик или приходит к постановке псевдопроблем. Например, неоднократно поднимался вопрос: в чём содержится больше информации — в курице или яйце? Несомненно, на основании изучения структур взрослой курицы можно написать гораздо более объёмистый трактат, нежели по результатам изучения структур её яйца. Но, с другой стороны, оценивая потенциальные возможности (генотип) яйца, можно сказать, что в зависимости от условий развития из него может получиться несколько разных фенотипов, т.е. информации как будто больше в яйце. Вывод: изучение поставленного вопроса для биологии не более продуктивно, чем изучение его классического предшественника — вопроса: что было прежде — курица или яйцо?
Дарвиновская теория эволюции (дарвинизм) — это теория, в основе которой лежит дарвиновское представление о естественном отборе. Со времён Дарвина биология ушла далеко вперёд, поэтому вполне закономерно, что современный дарвинизм сильно отличается от представлений самого Дарвина и при обсуждении сегодняшних проблем теории цитатами из трудов Дарвина уже ничего не доказать, ни опровергнуть нельзя. В современном понимании дарвиновская теория касается только механизма эволюции. Механизм этот состоит из взаимодействия двух компонентов: генотипической изменчивости (в самом широком смысле) и естественного отбора. Изменчивость имеет ненаправленный характер и сама по себе, без отбора, к эволюции не приводит. Для осуществления же отбора, чтобы он не приводил просто к сокращению численности особей, необходима достаточная интенсивность размножения; её можно рассматривать в качестве третьего необходимого компонента механизма эволюции.
Термин „адаптация“, а также производные от него („адаптироваться“, „адаптированный“, „адаптивный“ и т. п.) имеют точные русские эквиваленты: „приспособление“, „приспособляться“, „приспособленный“, „приспособительный“ и пр. Латинская приставка „ad“ и русская „при“ — одинаково требуют указания о приспособлении к чему идёт речь, каков функциональный смысл данного приспособления. При этом „приспособление“ в равной мере можно понимать как обозначение и некоторого процесса, и результата этого процесса; результат можно обозначать также как „приспособленность“. Реально мы чаще всего имеем дело именно с результатами, т. е. уже с приспособленностью к чему-то.
К чему же может быть приспособленность? Прежде всего, конечно, к условиям существования. Но всякое существование складывается из конкретных функций. Значит, говоря про клетку, ткань, орган, что они адаптированы к определённым условиям, мы утверждаем, что они могут успешно функционировать в этих условиях; про организм же или вид мы скажем, что их адаптация означает способность в таких-то условиях успешно существовать. Например, лёгкие человека адаптированы к определённому газовому составу воздуха и определённому атмосферному давлению — т. е. в этих условиях они успешно снабжают тело кислородом и удаляют углекислоту. А перистый ковыль адаптирован к определённым почвенно-климатическим условиям и к биоценозу — т. е. способен в этих условиях нормально существовать как вид.
Никакого принципиального различия между понятиями адаптации и успешного функционирования или существования нет. Разница в том только, что термины „функционирование“ или „существование“ можно употреблять без ссылок на какие-либо условия, а говоря об адаптации такую ссылку нужно дать. Все попытки провести какое-либо принципиальное различие между адаптацией и функцией совершенно алогичны и произвольны. К сожалению, не избежал здесь алогизма даже такой выдающийся теоретик эволюции, как И.И. Шмальгаузен 10. Обозначив адаптацию как процесс морфофизиологической перестройки организма, определяемый изменением внешней среды, и справедливо отметив, что под адаптацией понимают также и результат этого процесса, т. е. физиологическую и морфологическую приспособленность, он затем утверждает, что только изменение функции есть адаптация, никакая же конкретная функция (результат изменения!) адаптацией не является. Налицо не только явное противоречие между двумя утверждениями (адаптация есть также и результат процесса; результат процесса не есть адаптация), но и явное несогласие с той элементарной истиной, что в эволюции нет конца, окончательного результата; всякий „результат“ — лишь какая-то точка непрерывного пути.
Любая адаптация — явление сложное, состоящее из системы частных адаптаций. Так, эффективность (т. е. адаптированность) дыхательной системы человека складывается из эффективности её основных компонентов: скелетно-мышечного аппарата, верхних дыхательных путей, бронхиальных древ, альвеол, кровеносных сосудов лёгких. А успешная функция каждого из этих компонентов, в свою очередь, обусловливается эффективностью ещё более частных деталей — вплоть до молекул. Поэтому адаптивность каждой детали любого уровня можно рассматривать отдельно, но при этом нельзя считать, что она и формировалась, и существует самостоятельно: ведь реальными объектами естественного отбора служат не отдельные признаки, а целые организмы; значит, и все адаптации возникают и имеют смысл не сами по себе, а только в системе целого организма.
Понятие адаптации не включает в себя требований уникальности и оптимальности. Говоря, что такой-то организм или вид адаптированы к каким-то условиям, мы вовсе не утверждаем, что к этим же условиям нельзя быть адаптированным лучше или же совсем иным способом. Одну и ту же задачу разные организмы решают по-разному. По-разному передвигаются по поверхности земли лягушка, ящерица и змея; по-разному проходит опыление у растений; в толпе людей на улице все одеты по сезону (адаптированы), но у всех одежда разная; самые разные языки пригодны для выражения одной и той же мысли и т. д. И тем не менее подчас выдвигается требование, чтобы адаптация подходила к условиям существования, как ключ к замку, т. е. была бы единственно возможной и притом непременно оптимальной — требование столь же нелогичное, сколь и небиологичное.
Нельзя также упускать из виду, что организм — это не только взрослый индивид: это весь онтогенез, начиная от зиготы. И едва ли не самая важная и ответственная во всей жизни особи задача — без нарушений пройти ранние стадии онтогенеза; на этих стадиях, стало быть, самое главное проявление и главный критерий адаптированности — устойчивость в осуществлении именно того конкретного пути развития, который должен привести к становлению достаточно жизнеспособной взрослой особи. Если же стереотип раннего онтогенеза нарушится, то получится, как у Пушкина в „Сказке о царе Салтане“:
Родила царица в ночь
Не то сына, не то дочь,
Не мышонка, не лягушку,
А неведому зверушку.
А „неведому зверушку“ вряд ли могут ожидать радужные перспективы.
И, наконец, последнее замечание об адаптациях: в рамках вида далеко не все особи функционально (т. е. адаптивно) равнозначны, и существуют они не изолированно друг от друга. Поэтому адаптированность вида — отнюдь не простая сумма (или средняя величина) адаптированности отдельных особей. Адаптация вида включает в себя и определённые взаимоотношения между особями и популяциями. Для эволюции же, понятно, наиболее важна итоговая адаптированность вида в целом, как целостной системы надорганизменного уровня. А так как крайне разнообразны и внешние условия, с которыми могут сталкиваться организмы, и адаптивные возможности самих организмов, то в результате совокупность адаптации каждого вида оказывается специфической, уникальной, отличной от общей адаптированности любого другого вида.
Логика в истории эволюционной теории
Почему эволюционная теория Дарвина, в противоположность теории Ламарка, появившейся на 50 лет раньше, получила поразительно быстрое и широкое признание? Ведь она, как и теория Ламарка, не имела прямых доказательств. Дело в том, что теория Дарвина удовлетворяла логике естествоиспытателя: она объясняла малопонятные явления через более понятные, доступные, по крайней мере в принципе, эмпирической проверке. Ламарк же в качестве объяснений выдвигал принципы отвлечённые, ещё менее эмпирически „осязаемые“ и проверяемые, чем то, что они призваны были объяснить. Дарвиновская же теория представлялась и достаточно внутренне логичной.
Однако уже вскоре после появления теории Дарвина в ней обнаружились логические недоработки. Первая из них, замеченная в 1867 г. инженером Ф. Дженкином (так называемый „кошмар Дженкина“), состояла в следующем: в дарвиновской схеме эволюционной дивергенции (расхождения) не учитывалась возможность скрещивания между разошедшимися ветвями, скрещивания, которое должно всю начавшуюся дивергенцию свести на нет. Теперь это затруднение кажется наивным, и выход из него логически напрашивается сам собой: нужно принять простое дополнительное условие — изоляцию, препятствующую скрещиваниям дивергирующих популяций. Однако когда зоолог М. Вагнер в 1868 г. предложил теорию географического видообразования, которая, в сущности, и вводила это необходимое условие, то и сам Вагнер, и большинство дарвинистов сочли географическое видообразование альтернативой теории Дарвина.
Среди генетиков бытует и другое представление о том, как был нейтрализован „кошмар“. Полагают, что „кошмар Дженкина“ потерял значение в результате работ Г. Менделя, показавших дискретность единиц наследственности, и тем самым, несостоятельность прежних представлений о количественной непрерывности, „слитности“ наследственности. Таким образом, если появившаяся мутация в дальнейших поколениях не обнаруживается, то, по Менделю, это не значит, что она „растворилась“: она может длительно сохраняться в популяции в качестве рецессивной, а затем вновь проявиться в гомозиготном состоянии. Но нетрудно видеть, что такие рассуждения отнюдь не устраняют „кошмара Дженкина“. Ведь появление новой мутации ещё не есть эволюционная дивергенция: это лишь проявление индивидуальной изменчивости, совершенно неопределённой в смысле адаптивного значения. Об эволюционной же дивергенции можно говорить тогда, когда мутация закрепится естественным отбором в какой-либо части исходной популяции, но будет отсутствовать в других частях. А это и может произойти только при их изоляции. В противном случае новая мутация распространится по всей популяции, и „кошмар Дженкина“ вступит в полную силу. К этому нужно ещё добавить, что наследственность имеет дискретную структуру только для индивидуальных генотипов; коллективный же генотип популяции может иметь любые частоты аллелей и поэтому по любым меняющимся признакам может рассматриваться в рамках концепции слитной наследственности.
Второй значительной логической недоработкой теории Дарвина было несоответствие идеи естественного отбора распространённому среди биологов XIX в. представлению о наследовании приобретённых признаков, которого придерживался и сам Дарвин, Ведь если модификации, т. е. особенности фенотипа, приобретённые в онтогенезе в ответ на некоторые воздействия внешней среды, наследуются, то этим, очевидно, можно объяснить адаптивную эволюцию и без естественного отбора. Эту логическую неувязку не распознал ни сам Дарвин, ни первые приверженцы его теории. Более того, когда А. Вейсман в конце XIX в. понял алогизм ситуации и выдвинул тезис о ненаследуемости приобретённых признаков 11, то дарвинисты ещё долгое время считали вейсманизм теорией, противостоящей дарвинизму.
Вейсман доказал ненаследуемость приобретённых признаков как логически, сопоставляя и анализируя известные факты, так и прямым экспериментом: отрубал мышам хвосты в течение 22 поколений подряд и не обнаружил бесхвостого потомства. Этот эксперимент Вейсмана сочли логически неубедительным: мол, изучалась наследуемость не естественной адаптивной модификации, а искусственного повреждения. На самом деле логически несостоятельна такая оценка эксперимента Вейсмана: во-первых, немалая часть фигурировавших в литературе примеров якобы имевшего место наследования приобретённых признаков также относилась к различным повреждениям 12, во-вторых, единственным внятно сформулированным представлением о возможном механизме наследования приобретённых признаков была гипотеза пангенезиса Ч. Дарвина (согласно которой из всех органов тела в половые клетки поступают некие мельчайшие „геммулы“, передающие потомству признаки родителей), которая совершенно разбивалась экспериментом Вейсмана.
Но для опровержения тезиса о наследовании приобретённых признаков эксперимент вообще не нужен, ибо нетрудно показать, что это представление противоречит повседневным фактам и поддерживается только с помощью произвольных, не выдерживающих ни фактической, ни логической проверки допущений и оговорок, а то и просто мифов.
Например, если светлокожие супруги переехали на юг, приобрели на южном солнышке тёмный цвет кожи, и у них родился темнокожий ребёнок, то учёный, убеждённый в наследовании приобретённых признаков, может воспринять этот факт как доказательство своей правоты. Но уже обыкновенный житейский опыт в таком объяснении заставит усомниться. А строгая научная логика его и вовсе не примет: ведь у родителей кожа потемнела только после длительного воздействия солнца, и если младенец родится уже тёмным, значит, его кожа имеет свойство, которого у родителей не было (о выщеплении рецессивных генов тут не может идти речь, так как гены тёмной окраски доминантны).
Представление о наследовании приобретённых признаков заходит в тупик и перед тем обыкновенным фактом, что потомство не наследует столь существенной „приобретённой“ характеристики родителей, как их возраст: возьмём ли мы семечко от тысячелетнего дерева или от молоденького, только что вступившего в плодоношение,— в обоих случаях сеянцы будут начинать своё развитие от одной и той же точки.
Вейсман выдвинул ещё один важный тезис: об обособленности „зародышевой плазмы“ от „сомы“. На современном языке мы бы могли сказать, что каждая живая система состоит из двух подсистем: несущей наследственную информацию и управляющей развитием особи (зародышевая плазма) и осуществляющей жизнедеятельность (сома). При этом элементы первой подсистемы — кодирующие структуры — не могут возникать заново или из других структур тела (сомы) либо превращаться в другие структуры: они умножаются только воспроизводя себя путём матричной репликации.
Очевидна тесная логическая связь второго тезиса Вейсмана с первым — о невозможности наследования приобретённых признаков; из сочетания обоих тезисов следует, что наследственная информация в ходе онтогенеза особи может только копироваться или же „развёртываться“ (проявляться) на фенотип, но не может с фенотипа „свёртываться“.
Фундаментальное значение положений Вейсмана не только для теории эволюции, но и для всей биологии позволяет говорить о них как об аксиомах биологии. При этом тезис об обособленности кодирующих структур от сомы, очевидно, в логическом порядке должен быть первым; его можно назвать аксиомой организации живого (или первой аксиомой Вейсмана), а тезис о ненаследуемости приобретённых признаков — аксиомой наследования (или второй аксиомой Вейсмана) 13.
Однако полное признание идеи Вейсмана получили далеко не сразу. Когда в 1950-х годах Дж. Уотсон и Ф. Крик создали представление о двойной спирали ДНК как носителе наследственной информации, многие биологи восприняли это чуть ли не как потрясение основ: господствовало убеждение, что такая роль должна принадлежать белку. А ведь ?