Статья: Оптимальная антивирусная защита информации
Как известно, вирусная инфекция не только разрушает информацию, но размножается и гибнет (дезактивируется). процесс размножения и гибели вирусов может быть представлен моделью (2) изменения объема совокупности, члены которой могут погибать (или исчезать любым другим способом) [1]:
, (2)
где - количество вирусов в системе при .
Проникновение вирусов в систему можно рассматривать как биноминальное распределение [1]. пусть - число вирусов, поступивших в систему за время с интенсивностью :
. (3)
при число вирусов, находящихся в системе к моменту времени t, определяется выражением
(4)
или
. (5)
из допущения (3) , (5) следует:
. (6)
Накапливая статистические данные зависимости , и пользуясь методом наименьших квадратов, величины можно определить, минимизируя среднеквадратическое отклонение найденной аналитической зависимости от накопленных статистических данных:
, (7)
где g – среднеквадратическое отклонение; n - количество накопленных данных;и - статистические данные.
Вследствие трансцендентности функций (7) воспользуемся методом поиска минимума функций нескольких переменных [2].
Определяя величины , время восстановления информации запишется в виде:
. (8)
Суммируя (1) и (8), получаем время работы авпо:
. (9)
Задача поиска оптимального режима работы авпо сводится к минимизации правой части (9), решением является оптимальный интервал между запусками авпо tопт при времени работы авпо, равном тmin (рисунок).
|
|
Выражение (9) является трансцендентным, и поиск минимального его значения осуществляется при помощи численных методов поиска минимума функций одной переменной [2].
Применение раздельной защиты. как известно, различные типы вирусов инфицируют различные типы информации. ввиду того что информация в вычислительных системах разнородна и имеет разные характеристики (частота использования, подверженность вирусным атакам и т.д.), имеет смысл осуществлять раздельное сканирование Различных типов информации и определять параметры защиты для каждого типа информации отдельно, избегая при этом избыточного тестирования файлов, не представляющих угрозу. время, затраченное на поддержание антивирусной защиты s типов информации, имеет вид:
, (10)
где-характеристики вычислительной системы для с-ого типа информации.
Нахождение аналитического решения системы (10) сводится к нахождению оптимального режима защиты отдельно для каждого типа информации.
Заключение. предлагаемый подход эффективного использования авпо, учитывая характеристики вычислительной системы и внешнего воздействия на систему защиты, приводит к увеличению серверного времени, затрачиваемого на решение задач пользователей. применение индивидуального подхода для каждого типа информации позволяет определить глобально оптимальный режим работы системы антивирусной защиты, а это обеспечивает высокий уровень защиты без наращивания мощностей вычислительной системы, избегая избыточного тестирования. достоинствами данного подхода является инвариантность относительно используемых авпо, типов информации, топологии сети и платформы сервера. рассмотренный подход наиболее эффективен при использовании на корпоративных файлах, web-серверах.
Список литературы
1. Феллер В. Введение в теорию вероятностей и ее приложения. м.: мир, 1982.
2. Банди Б. Методы оптимизации. вводный курс. м.: радио и связь, 1998.