Статья: Принципы термодинамики
Теперь, когда мы привыкли к понятию энергии, а еще больше, пожалуй, к самому слову "энергия", нам может показаться, что работа Гельмгольца ничего не добавляет к тому, что утверждали Майер и Джоуль. Но чтобы понять новизну подхода Гельмгольца, достаточно вспомнить, что Майер и Джоуль рассматривали лишь частный случай, пусть даже и очень важный, тогда как Гельмгольц ввел в физику величину, ранее неизвестную или смешиваемую с понятием силы, величину, участвующую во всех физических явлениях, способную меняться по форме, но неуничтожимую, невесомую, но определяющую форму существования материи. Вся физика второй половины XIX века покоится на двух различных сущностях — материи и энергии, подчиняющихся каждая своему закону сохранения. Характерным различием этих сущностей является то, что материя обладает весом, тогда как энергия невесома.
Особенно энергично защищал и распространял взгляды Гельмгольца Джон Тиндаль. Они вдохновили школу "энергетиков", начало которой было положено в Англии работами Уильяма Ранкина (1820—1872). Программа этой школы заключалась в отказе от механической концепции мира, согласно которой все явления должны объясняться с помощью понятий материи и силы. Вместо этой концепции выдвигается другая, в которой все явления объясняются взаимодействием различных форм энергии, актуальных или потенциальных, заключенных в телах. Для энергетической школы энергия — единственная физическая реальность, материя — лишь кажущийся носитель ее.
МЕХАНИЧЕСКАЯ ТЕОРИЯ ТЕПЛОТЫ
Основателем механической теории теплоты был Рудольф Клаузиус (1822—1888), начавший в 1850 г. свои классические исследования принципа эквивалентности теплоты и работы и закона сохранения энергии.
Клаузиус заметил, что постоянство соотношения между затраченной работой и полученной теплотой соблюдается лишь при циклических процессах, т. е. при таких процессах, при которых исследуемое тело после ряда изменений возвращается в первоначальное состояние. Так, в простейшем калориметре Джоуля постоянство соотношения не соблюдается, потому что в начале опыта вода в нем холодная, а в конце — горячая. Именно для обеспечения цикличности первоначальный калориметр Джоуля был заменен калориметром Бунзена. Если процесс не циклический, то это отношение не постоянно, т. е. разность между затраченным теплом и полученной работой или наоборот (измеренными в одних и тех же единицах) не равна нулю. Например, при испарении определенного количества воды, поддерживаемой при постоянной температуре, сообщенное ей количество тепла значительно больше, чем работа расширения газа. Куда же ушла остальная энергия?
Клаузиусу пришла в голову счастливая идея уравнять счет, введя внутреннюю энергию. В рассматриваемом случае теплота, подводимая к воде, частично преобразуется во внешнюю работу расширения пара (и воды), а частично — во внутреннюю энергию, которую пар возвращает в виде тепла при конденсации. Введением понятия внутренней энергии (причем реальное значение имеет лишь ее изменение) Клаузиус придал принципу эквивалентности точную математическую форму и в случае нециклических процессов.
Клаузиусу пришлось защищать принцип Карно (второе начало термодинамики) от многочисленных атак. Он вывел его из другого постулата, который представляется интуитивно более очевидным, чем принятый Карно. Новый постулат Клаузиуса гласит, что теплота не может самопроизвольно переходить от более холодного тела к более нагретому. Слово "самопроизвольно" стоит здесь, чтобы указать, что если иногда такой переход имеет место, как, скажем, в растворах, в холодильных машинах и т. п., то он в известном смысле "вынужденный", т. е. сопровождается другим, компенсирующим явлением. Этому новому постулату Клаузиуса вскоре были даны другие эквивалентные формулировки: явления природы необратимы; явления происходят так, что энергия всегда вырождается, и т. п. Все эти формулировки не соответствуют традиционным законам динамической обратимости. К этому вопросу мы еще вернемся.
В 1865 г. Клаузиус ввел новую величину, которая сыграла фундаментальную роль в последующем развитии термодинамики. Эта новая величина — энтропия — математически строго определена, но физически мало наглядна. Клаузиус показал, что абсолютное значение энтропии остается неопределенным, определены лишь ее изменения в термически изолированных необратимых системах; в идеальном случае обратимых процессов энтропия остается постоянной.
Введению этой новой величины физики противодействовали весьма энергично, особенно из-за ее таинственного характера, обусловленного главным образом тем, что она не действует на наши органы чувств. Поскольку ее изменение равно нулю для идеальных обратимых процессов и положительно для реальных обратимых процессов, то энтропия есть мера отклонения реального процесса от идеального. Этим объясняется данное Клаузиусом название этой величины, которое этимологически означает "изменение".
Механическая теория теплоты, приоритет создания которой оспаривался Ранкином на основе представленной им в 1850 г. Королевскому обществу работы, где рассматривался лишь принцип эквивалентности, прожила трудную жизнь и окончательно приобрела права гражданства в науке лишь к концу XIX столетия, прежде всего благодаря работам Макса Планка 1887-1892 гг.
КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ
ПРИРОДА ТЕПЛОТЫ
Основоположники принципов термодинамики — Майер, Джоуль, Кольдинг, а в известном смысле и сам Карно — в сущности не интересовались природой теплоты. Они ограничивались лишь утверждениями, что теплота может при определенных условиях переходить в работу и наоборот. Дальше этого фундаментального представления механическая теория теплоты не шла. Основоположники теории никогда не считали необходимым рассматривать вопрос, какова же внутренняя связь между механическими процессами и тепловыми явлениями.
Гельмгольц первым выдвинул в своей работе 1847 г. гипотезу о том, что внутреннюю причину взаимной превращаемости теплоты в работу можно найти (каким путем — он не указал), сведя тепловые явления к механическим, т. е. к явлениям движения.
Путь, каким это можно сделать, был найден в 1856 г. Августом Крёнигом (1822—1879), а годом позже — Клаузиусом. Основное положение теории было сформулировано еще Даниилом Бернулли в разделе X "Гидродинамики" (1738 г.) и развито в работе Даниила и Иоганна Бернулли, удостоенной в 1746 г. премии Парижской Академии наук.
Согласно Бернулли, теплота — это внешнее проявление колебательного движения молекул. На основе этой гипотезы Даниил Бернулли истолковывал давление газа как результат действия его молекул на стенки сосуда в результате соударений. Эта теория выдвигалась много раз и после Бернулли. В частности, мы знаем, что ее придерживались Лавуазье и Лаплас. В 1848 г. даже Джоуль объяснял давление газа по методу Бернулли.
Однако рассмотрение этих ученых оставалось исключительно качественным, в частности и потому, что для углубленного количественного рассмотрения нужна более надежная теория атомного строения вещества. К середине XIX столетия атомистика так шагнула вперед, что физики уже могли с доверием ее использовать и она начала сливаться с механической теорией теплоты в единую кинетическую теорию газов. Достаточно напомнить лишь основной закон, сформулированный Авогадро в 1811 г.: равные объемы газа при одинаковых давлении и температуре содержат одинаковое число молекул. Добавим, что в период создания основ кинетической теории значение этого числа еще не было известно.
КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ
Согласно Крёнигу, газ состоит из совокупности молекул, которые он уподоблял идеально упругим шарикам, находящимся в абсолютно беспорядочном непрерывном движении (молекулярный хаос). Крёниг предположил также, что объем молекул пренебрежимо мал по сравнению с полным объемом газа и что взаимодействия молекул нет. В результате непрерывного движения молекулы сталкиваются между собой и соударяются со стенками сосуда, меняя соответственно при этом свою скорость. На основе этой гипотезы и учитывая закон Авогадро, Крёнигу удалось объяснить закон Бойля с помощью рассуждения, используемого и сейчас в курсах физики и приводящего к выводу, что произведение давления на объем единицы массы газа равно двум третям кинетической энергии поступательного движения всех молекул газа.
Таким образом, указанное произведение остается постоянным, пока остается постоянной кинетическая энергия поступательного движения молекул. Но согласно уравнению состояния газа это произведение меняется с изменением температуры, так что кинетическая энергия зависит от температуры. Отсюда возникает мысль определить температуру через среднюю кинетическую энергию, установив между этими двумя величинами вполне определенное математическое соотношение.
Таковы основы кинетической теории Крёнига, развитой Клаузиусом сначала в работе 1857 г., а затем в большом исследовании 1862 г.
Вскоре кинетической теории удалось объяснить многие явления (диффузию, растворение, теплопроводность и ряд других), рассчитать сначала относительные, а затем и абсолютные значения средних скоростей молекул различных газов при различных температурах, найти средний свободный пробег молекулы (Максвелл, 1866 г.), определенный как среднее значение длины прямолинейного пути, проходимого молекулой между последовательными соударениями. Исходя из этого нетрудно найти среднее число соударений каждой молекулы в определенное время (получаются громадные числа: при обычных условиях — порядка 5 миллиардов соударений в секунду).
Приведенная выше схема несколько упрощена, так что полученные выводы могут соответствовать опыту лишь в первом приближении. В частности, уравнение состояния, которое эта теория выводит для всех условий, в действительности справедливо лишь для сильно разреженных газов; мы уже говорили о первых экспериментальных наблюдениях отклонения реальных газов от этого уравнения состояния.
В 1873 г. появилась первая работа Ван дер Ваальса (1837—1923), в которой показано, что достаточно исправить изложенную выше теорию лишь в двух пунктах, чтобы прийти к выводам, применимым к реальным газам. Во-первых, надо учесть, что объем молекул не равен нулю, так что при неограниченном увеличении давления объем газа стремится не к нулю, а к определенному конечному значению, называемому "коволюмом" и связанному с полным объемом молекул газа. Во-вторых, нужно учесть взаимное притяжение молекул, т. е. силы сцепления (когезия), что приводит к некоторому уменьшению давления, потому что каждая молекула газа в момент ее соударения со стенкой как бы тормозится притяжением остальных молекул. Учитывая эти две поправки, Ван дер Ваальс дал уравнение состояния газа, носящее сейчас его имя и применимое даже к не очень плотной жидкости (например, к воде) в подтверждение заголовка оригинальной статьи Ван дер Ваальса "О непрерывности состояния жидкости и газа".
СТАТИСТИЧЕСКИЕ ЗАКОНЫ
Мы уже говорили, что утверждение второго начала термодинамики в формулировке Клаузиуса не соответствовало традиционным механическим представлениям. Механика всегда рассматривала процессы природы как обратимые, тогда как второе начало термодинамики считает их необратимыми. Кинетическая теория превращает это несоответствие в противоречие: если теплота сводится к движению отдельных молекул, подчиняющемуся обратимым динамическим законам, то как же можно совместить обратимость отдельных процессов с необратимостью в целом? По-видимому, одной из причин острой борьбы между представителями энергетического направления — Ранкином, Гельмгольцем, Оствальдом, Махом— и сторонниками атомистики, которую "энергетики" считали слишком грубой и наивной, является именно вопрос о противоречии между обратимостью динамических процессов и вторым началом термодинамики. Согласно энергетической школе, противоречие может быть снято, если отказаться от одной из посылок, поэтому они были склонны отказаться от кинетической теории и вернуться к агностической концепции Майера.
Однако это противоречие было преодолено совсем иным путем. Первым пошел по этому пути Максвелл, поставив перед собой конкретную задачу кинетической теории газов: если молекулы газа находятся в непрерывном движении, то какова скорость определенной молекулы в определенный момент?
Максвелл начинает с замечания, что предположение Бернулли о равенстве скоростей всех молекул принять нельзя. Действительно, если бы даже в какой-либо определенный момент все молекулы газа имели одну и ту же скорость, то такое идеальное состояние тотчас нарушилось бы в результате взаимных соударений молекул. Так, если молекула А налетает на молекулу В перпендикулярно направлению ее движения, то легко рассчитать, что молекула В ускоряется, а молекула А замедляется.
Но проследить мысленно или рассчитать судьбу каждой отдельной молекулы из бесчисленного количества молекул, содержащихся в объеме газа, не представляется возможным. Можно, согласно Максвеллу, лишь определить статистическое распределение их скоростей, т. е. ответить не на вопрос о том, какова скорость отдельной определенной молекулы, а на вопрос, сколько молекул имеют определенную скорость в заданный момент. В основу своего расчета Максвелл положил следующие интуитивные предпосылки: ни одно направление движения не является привилегированным; ни одно значение скорости не является привилегированным или запрещенным (т. е. молекула может принимать все значения скорости от нулевой до максимальной); каждый газ, предоставленный самому себе, приходит в конце концов в стационарное состояние, в котором статистическое распределение скоростей остается постоянным во времени. Иными словами, если две молекулы со скоростями а и b сталкиваются и после соударения приобретают скорости р и q, то одновременно две другие молекулы со скоростями р и q сталкиваются и приобретают соответственно скорости а и b, так что число молекул, имеющих скорости а, b, . . ., р, q, . . ., остается постоянным. Исходя из этих гипотез и некоторых других, менее существенных, к которым он прибегает по ходу рассуждений, Максвелл пришел к известной формуле для распределения скоростей молекул газа. Эта формула вызвала длительную дискуссию, утихшую лишь в последние годы, когда молекулярные насосы позволили произвести ее экспериментальную проверку. Не прослеживая всей дискуссии, достаточно подчеркнуть огромное значение введения статистических законов. На место причинных динамических законов становятся статистические законы, позволяющие предвидеть эволюцию природы не с абсолютной достоверностью, а лишь с большой степенью вероятности. Понятие вероятности физического явления, неявно введенное Максвеллом, было применено в 1878 г. Людвигом Больцманом (1844—1906) для преодоления трудностей, связанных со вторым законом термодинамики. В связи с этим находится классический мысленный эксперимент Максвелла (1871 г.): пусть газ разделен на две части диафрагмой с небольшим отверстием, которое может перекрываться задвижкой, и пусть некий "демон", способный видеть молекулы и стерегущий этот проход, открывает задвижку для молекул, движущихся в одном направлении, и закрывает ее для молекул, движущихся в противоположном направлении. Через некоторое время произойдет сжатие всего газа в одной из половинок объема, и второе начало термодинамики будет нарушено.