Статья: Розробка многоконтурной системи автоматичного керування шахтними котельними установками

ψ1, ψ2…ψn – cума зовнішніх збурювальних дій.

З урахуванням математичної моделі процесу синтезуємо структурну схему автоматичного керування топками НТКШ, яка наведена на рис. 2.

При цьому необхідно додати, що на рисунку поданий найпростіший варіант схеми, який демонструє керування лише одним котлоагрегатом НТКШ.

Як бачимо з рис.2 у схемі є один головний контур регулювання по температурі НТКШ, яку визначаємо за допомогою термопари (ТП), та два підлеглих контури – по швидкості подачі твердого палива, що визначаємо за допомогою тахогенератора (ТГ) та швидкості дуттєвого повітря, яку визначаємо за допомогою датчика швидкості дуттєвого повітря – дифманометра (ДШДП) [3].

У системі маємо задатчик температури киплячого шару (ЗТ), на який надходить сигнал уставки Хоп від оператора, що обирається в залежності від необхідної продуктивності топки Q, а також сигнал зворотньоого зв’язку по температурі теплоносія.

Розглянемо алгоритм функціонування розробленої системи автоматизації.

На ЗТ надходить різностний сигнал Хз1 = Хоп-Ус. Це дає змогу коригувати уставку температури НТКШ у тому, випадку коли з певних причин ми не можемо вийти на потребуємий рівень Q при зав’даній температурі.

З задатчика температури сигнал Хз2 надходить на регулятор швидкості дуттєвого повітря (РШДП) та регулятор швидкості закидання твердого палива до топки НТКШ (РШ) .

Після цього керуючий сигнал Хз7 з РШ надходить на виконавчий механізм повороту лопаточок вентилятора дуттєвого повітря, що призводить до змінення швидкості дуттєвого повітря, а це у свою чергу викликає змінення температури НТКШ.

У свою чергу керувальний сигнал Хз4 з регулятора швидкості закидання твердого палива надходить на привідний двигун (ПД) закидувача палива, що обертає вал питателя (ВП) твердого палива.

Для досягнення необхідної якості керування вводиться зворотній зв’язок по швидкості обертання вала питателя, що досягається вимірюванням швидкості обертання вала питателя, та подачею сигналу з нього Ув1 на суматор, де він сумується з Хз4 і в результаті на ПД надходить вже сумуючий керувальний сигнал Хз5.

Аналогічним шляхом здійснюємо коригування по швидкості дуттєвого повітря, де сигнал Ув3 з датчика швидкості дуттєвого повітря складається з сигналом від РШДП.

Оскільки, спочатку пріоритет регулювання температури оддаємо регулюванню змінення подачі твердого палива, а у разі неможливості отримати необхідну глибину регулювання, переходимо до регулювання за допомогою дуттєвого повітря, то на РШДП надходить також сигнал з ТГ, де сумується з Хз2.

Для обох контурів регулювання вводимо зворотній зв’язок по температурі НТКШ. Даний параметр вимірюється за допомогою ТП, на яку оказує вплив температура НТКШ Ут. У контурі регулювання по твердому паливу вихідний сигнал з неї Fв сумується з Ув1, та їх сумарний сигнал Ув2 через зворотній зв’язок надходить на суматор, де сумується з керувальним сигналом з ЗТ Хз2 і на РШ вже діє сигнал Хз3.

У контурі регулювання по швидкості дуттєвого повітря вихідний сигнал з ТП Fв сумується з сигналом з ДШДП Ув3, та через зворотній зв’язок їх сумарний сигнал Ув4 надходить на суматор, де сумується з керувальним сигналом з ЗТ Хз2 та сигналом з ТГ і на РШДП діє сигнал Хз6.

Таким чином, синтезована схема дозволяє регулювати роботу топки НТКШ відповідно, до задачі оптимальної роботи котельної [4], що була поставлена вище.

Згідно з математичним описом моделі функціонування котлоагрегатів ми проводимо регулювання по контуру температури НТКШ, завдяки чому виходимо на необхідну потужність топки. При цьому регульовані температури НТКШ обираються виходячи з умови найбільшого загального ККД при умові виконання потребуємої продуктивності. При такому регулювання наша система топок працює з максимальним ККД, що зводить втрати енергії до мінімума, отже ми виконуємо поставлену функцію цілі.

Також необхідно підкреслити, що регулювання стану технологічних параметрів топки по підлеглим контурам дозволяє отримати необхідний вектор керування. З цього витікає, що значення технологічних параметрів будуть підтримуватися на рівні, необхідному для отримання завданої тепловіддачі в умовах змінних витрат теплоносія. Отже зайве використання твердого палива та дуттєвого повітря виключається, що значно зменшує втрати енергії від хімічного недожого палива та її винесення разом з дуттєвим повітрям.

Список литературы

Сидельковский Л.Н., Юренев В.Н. Котельные установки промышленных предприятий: Учебник для вузов.–3-е изд., перераб.–М.:Энергоатомиздат, 1988.-528с.: ил.

Бородуля В.А., Гупало Ю. П. Математические модели химических реаторов с кипящим слоем. Мн., “Наука и технка”, 1976, 208 с.

Ж.В. Вискин и др. Сжигание угля в кипящем слое и утилизация его отходов. – Донецк: «Новый мир», 1997.- 284 с.

Хзмалян Д.М. Теория топочных процессов: Учеб. Пособие для вузов. – М.: Энергоатом издат, 1990.- 352 с.: ил.

К-во Просмотров: 127
Бесплатно скачать Статья: Розробка многоконтурной системи автоматичного керування шахтними котельними установками