Учебное пособие: Кинетика низкотемпературной радиационной постполимеризации тетрафторэтилена в стеклующихся фторорганических растворителях

где [М] о — исходная концентрация мономера. Отсюда следует, что предельный выход полимера q (qпри £>1), образовавшегося после достижения максимума скорости полимеризации, описывается следующим уравнением:


Величина gможет быть легко определена из калориметрических измерений. Таким образом, для каждого из экспериментов, приведенных в таблице, известны величины к0 и q, поэтому, пользуясь уравнением (3) можем определить величину /cp [R„]0 . Поскольку условия и доза предварительного облучения во всех экспериментах не изменялись и величины радиационно-химического выхода радикалов для ТФЭ и ФМП почти не различаются, можно сделать предположение об одинаковой эффективности инициирования полимеризации и, следовательно, постоянстве величины (Rp ]o в каждом эксперименте. Поэтому изменение /ep [RP ]0 с температурой отражает лишь температурную зависимость константы скорости роста, которая на рис. 3 представлена в аррениусовских координатах. Энергия активации роста Ер = (14650±2100) Дж/моль. Величина предэкспоненци-ального множителя константы скорости роста может быть получена, если удается измерить величину [Rp '] 0 - Спектры ЭПР в исследуемой температурной области представляют собой сложную суперпозицию спектров радикалов ТФЭ и ФМП, и поэтому определение концентрации растущих полимерных радикалов не представляется возможным.

Образующиеся при радиолизе ФМП (при 77 К) и следующем его размораживании стабильные радикалы (RCT ) [5] не инициируют полимеризацию в условиях эксперимента. Действительно, после размораживания радиолизованной системы ФМПЧ-ТФЭ и проведения полимеризации (конверсия мономера 13%) по спектрам ЭПР регистрируется RCT . Однако при замораживании и повторном разогревании системы полимеризация не наблюдается, RCT не инициируют полимеризацию, как в области расстекловывания, так и при температурах выше Тс .

Общая концентрация радикалов, стабилизированных при радиолизе системы ТФЭ + ФМП, возрастает практически линейно с дозой облучения до —20 Мрад. Радиационно-химический выход радикалов GR =1,3. Приразмораживании радиолизованной системы ФМП + ТФЭ до 300 К, как и для чистого ФМП [5], более половины накопленных радикалов и в жидкости остается стабильным. Однако эти радикалы, как упоминалось выше, не инициируют полимеризацию. Оценки показывают, что эффективность использования накопленных при низкотемпературном радиолизе радикалов для инициирования полимеризации невысока. Так, _если предполагать, что степень полимеризации полученного полимера Р=100, то лишь 5% накопленных в ходе радиолиза при 77 К радикалов дают полимерные цепи.

С увеличением дозы предварительного облучения выход полимера в исследуемой системе монотонно возрастает и при дозах 7—10 Мрад достигает предельного значения (рис. 4). Для выяснения причины такой остановки реакции было проведено исследование влияния фотоотбеливания на процесс постполимеризации. Облучение видимым УФ-светом (Х^236 нм) стеклообразного раствора ТФЭ в ФМП при 77 К в течение 5 ч не приводит к полимеризации при размораживании, на калориметрической кривой не наблюдается тепловыделения, связанного с полимеризацией. Фотоотбеливание образца, предварительно подвергнутого f-радиолизу в тех же условиях, приводит к частичному подавлению постполимеризации, выход полимера уменьшается вдвое. Действие же УФ-света при 77 К на систему ФМП + ТФЭ, содержащую RCT , не приводит к образованию полимера при расстекловывании. Таким образом, совокупность полученных экспериментальных данных не дает основания предполагать, что ионные процессы играют определяющую роль в постполимеризации.

Была исследована также постполимеризация ТФЭ при расстекловывании других фторорганических растворителей. Соединение ГОГ при охлаждении полностью переходит в стеклообразное состояние (Тс —155 К). Растворение ТФЭ в этом соединении также приводит к смещению Тс в область более низких температур. Полимеризация предварительно облученных образцов протекает в области расстекловывания, как и для системы ФМП + ТФЭ, однако общий выход полимера выше (таблица). Спад скорости полимеризации для каждого из экспериментов, представленных в таблице, согласно уравнению (1), хорошо спрямляется в координатах lgwот t, что дает возможность определить величину к0 (таблица). По уравнению (3) были определены значения cp [Rp ]0 , которые также представлены в таблице. Температурные зависимости величин ка и [Rp] о для системы ГОГ + ТФЭ представлены на рис. 3.

Таким образом, для этой системы в температурном интервале 120— 150 К имеем с0 =5,5ехр с-1 и кр [Rp - ]=180 exp{-3500/RT} с-1 Следовательно, различия процессов постполимеризации ТФЭ при расстекловывании исследованных матриц связано с различием в константах обрыва. Уменьшение kCl при переходе от ФМП к ГОГ приводит, по-видимому, к увеличению средней длины образующихся полимерных цепей и, следовательно, к увеличению общего выхода полимера при одинаковой дозе предварительного облучения.

Расстекловывание перфтор-4-метилпентена-2 происходит при более низких температурах (Гс ^112 К). Растворение ТФЭ в этой матрице приводит лишь к незначительному смещению Тс в область низких температур. Естественно, что полимеризация при столь низких температурах протекает с незначительными скоростями.

Таким образом, использование метода постполимеризации при расстекловывании матрицы позволило определить основные кинетические параметры низкотемпературной полимеризации ТФЭ. Для определения предэкспоненциальных множителей константы роста необходимы измерения числа растущих полимерных цепей. Подобные кинетические исследования с использованием матриц, стеклующихся при более высоких температурах, позволит в дальнейшем провести измерение кинетических параметров процесса для более широкого температурного диапазона.


ЛИТЕРАТУРА

1. Аллаяров С.Р., Кирюхин Д.П., Асамов М.К., Варкалов И.М. Химия высоких энергий, 1980, т. 14. № б, с. 509.

2. Варкалов И.М. Успехи химии, 1980, т. 49, № 2, с. 362.

3. Аллаяров С.Р., Кирюхин Д.П., Асамов М.К., Варкалов И. М. Высокомолек. соед. А, 1982, т. 24. № 3, с. 466.

4. Варкалов И.М., Кирюхин Д.П. Высокомолек. соед. А, 1980, т. 22, № 4, с. 723.

5. Аллаяров С.Р., Варкалов И. М., Голъданский В.И., Кирюхин Д.П. Изв. АН СССР. Сер. хим., 1983, № 6, с. 1225.

К-во Просмотров: 183
Бесплатно скачать Учебное пособие: Кинетика низкотемпературной радиационной постполимеризации тетрафторэтилена в стеклующихся фторорганических растворителях