Учебное пособие: Кратчайшая история времени Стивен Хокинг Леонард Млодинов
Благодаря тому что Земля имеет форму шара, мачты и паруса судна появляются из‑за горизонта раньше, чем корпус.
Было замечено, что среди тысяч видимых звезд, которые двигались все вместе, пять (не считая Луны) перемещались своим, особым манером. Иногда они отклонялись от обычного направления с востока на запад и пятились назад. Эти светила назвали планетами, что в переводе с греческого означает «блуждающий». Древние греки наблюдали только пять планет: Меркурий, Венеру, Марс, Юпитер и Сатурн, потому что только их можно увидеть невооруженным глазом. Сегодня мы знаем, почему планеты движутся по таким странным траекториям. Если звезды почти не перемещаются по отношению к Солнечной системе, планеты обращаются вокруг Солнца, поэтому их путь по ночному небу выглядит гораздо сложнее движения далеких звезд.
Аристотель считал, что Земля неподвижна, а Солнце, Луна, планеты и звезды вращаются вокруг нее по круговым орбитам. Он верил в это, полагая, в силу мистических причин, что Земля — центр Вселенной, а круговое движение — самое совершенное. Во втором веке нашей эры другой греческий ученый, Птолемей, развил эту идею, построив всеобъемлющую модель небесных сфер. Птолемей был увлеченным исследователем. «Когда я изучаю спирали движения звезд, — писал он, — я уже не касаюсь ногами земли».
В модели Птолемея Землю окружали восемь вращающихся сфер. Каждая следующая сфера больше предыдущей — подобно русским матрешкам. Земля помещается в центре. Что именно лежит за границей последней сферы, никогда не уточнялось, но это определенно было недоступно человеческому наблюдению. Так что самую дальнюю сферу считали своего рода границей, вместилищем Вселенной. Предполагалось, что звезды занимают на ней фиксированные места, так что при вращении этой сферы они движутся по небу все вместе, сохраняя взаиморасположение, — что мы и наблюдаем. На внутренних сферах размещаются планеты. В отличие от звезд, они не закреплены жестко, а движутся относительно своих сфер по небольшим окружностям, называемым эпициклами. Это вращение вкупе с вращением планетных сфер и делает движение планет относительно Земли таким сложным (рис. 2). Этим построением Птолемей сумел объяснить, почему наблюдаемые пути планет по звездному небу гораздо сложнее круговых.
Модель Птолемея позволяла с достаточной точностью предсказывать положения светил на небе. Но ради этого Птолемей вынужден был допустить, что в некоторые моменты Луна, следуя по своему пути, подходит к Земле вдвое ближе, чем в иное время. А это значит, что в такие моменты Луна должна казаться вдвое крупнее! Птолемей знал этот недостаток своей системы, и все же она получила широкое, хотя и не всеобщее признание. Христианская церковь сочла эту картину мира соответствующей Священному Писанию, поскольку она оставляла достаточно места для рая и ада за пределами сферы неподвижных звезд — немалое преимущество.
Рис. 2. Модель Птолемея.
В модели Птолемея Земля является центром Вселенной, заключенным внутри восьми сфер, на которых размещаются все небесные тела.
Однако в 1514 г . польский каноник Николай Коперник предложил другую модель мира. (Сначала, возможно из страха прослыть еретиком, Коперник распространял свою теорию анонимно.) Революционная идея Коперника состояла в том, что не все небесные тела должны вращаться вокруг Земли. Он утверждал, что Земля и планеты обращаются по круговым орбитам вокруг неподвижного Солнца, покоящегося в центре Солнечной системы. Подобно модели Птолемея, теория Коперника работала хорошо, но все же не полностью соответствовала наблюдениям. Ее относительная простота — в сравнении моделью Птолемея, — казалось бы, сулила быстрый успех. Однако прошло почти столетие, прежде чем ее приняли всерьез[1] . Два астронома — немец Иоганн Кеплер и итальянец Галилео Галилей — открыто встали на сторону теории Коперника.
В 1609 г . Галилей начал наблюдать ночное небо при помощи изобретенного[2] им телескопа. Посмотрев на Юпитер, он обнаружил, что эту планету сопровождают несколько маленьких спутников, обращающихся вокруг нее. Это указывало, что не все небесные тела обращаются вокруг Земли, как считали Аристотель и Птолемей. В то же самое время Кеплер усовершенствовал теорию Коперника, предположив, что планеты движутся не по окружностям, а по эллипсам. С учетом этой поправки предсказания теории неожиданно в точности совпали с наблюдениями. Открытия Галилея и Кеплера стали смертельными ударами для птолемеевской модели.
Хотя предположение об эллиптической форме орбит позволило усовершенствовать модель Коперника, сам Кеплер считал его лишь средством подгонки теории под наблюдения. Умом его владели предвзятые, умозрительные идеи об устройстве природы. Подобно Аристотелю, Кеплер считал эллипсы менее совершенными фигурами, чем окружности. Мысль о том, что планеты движутся по таким несовершенным орбитам, настолько претила ему, что он не признавал ее окончательной истиной. Беспокоило Кеплера и другое: представление об эллиптических орбитах было несовместимо с его идеей о том, что планеты обращаются вокруг Солнца под действием магнитных сил. И хотя тезис Кеплера о том, что магнитные силы обусловливают вращение планет, оказался ошибочным, нельзя не признать прозрением ту его мысль, что некая сила ответственна за движение небесных тел.
Правильное объяснение того, почему планеты обращаются вокруг Солнца, появилось намного позже, в 1687 г ., когда Исаак Ньютон опубликовал свои «Математические начала натуральной философии», вероятно самый значительный из когда‑либо изданных физических трудов. В «Началах» Ньютон сформулировал закон, согласно которому всякое неподвижное тело остается в покое, пока это состояние не нарушит какая‑либо сила, и описал, как под воздействием силы тело движется или меняет свое движение.
Итак, почему же планеты движутся по эллипсам вокруг Солнца? Ньютон заявил, что за это ответственна специфическая сила, и утверждал, что это та же самая сила, что вынуждает предметы падать на Землю, а не оставаться в покое, когда мы их отпускаем. Он назвал эту силу гравитацией. (Прежде, до Ньютона, английское слово gravity означало серьезное настроение, а также свойство предметов быть тяжелыми.) Ньютон также разработал математический аппарат, позволяющий количественно описать, как реагируют тела на действие сил, подобных гравитации, и решил получившиеся уравнения. Таким образом, Ньютон сумел доказать, что притяжение Солнца вынуждает Землю и другие планеты двигаться по эллиптическим орбитам — в точном соответствии с предсказанием Кеплера!
Ньютон провозгласил, что его законы применимы ко всему во Вселенной, от падающего яблока до звезд и планет. Впервые в истории движение планет объяснялось действием тех же законов, что определяют движение на Земле, и этим было положено начало современной физике и астрономии.
После отказа от Птолемеевых сфер не оставалось никаких причин думать, что Вселенная имеет естественные границы (очерченные самой дальней сферой). И поскольку положения звезд казались неизменными, если не считать их суточного движения по небу, вызванного вращением Земли вокруг своей оси, естественно было предположить, что звезды — это объекты, подобные нашему Солнцу, только очень‑очень далекие. И теперь уже не только Земля, но и Солнце не могло больше претендовать на роль центра мира. Вся наша Солнечная система оказывалась, по всей видимости, не более чем рядовым образованием во Вселенной.
Глава третья
СУТЬ НАУЧНЫХ ТЕОРИЙ
Чтобы говорить о природе Вселенной и рассуждать о том, имеет ли она начало или конец, следует уяснить, что представляет собой научная теория. Мы будем исходить из того наивного представления, что теория не более чем модель Вселенной или некоторой ее части, а также набор правил, которые помогают соотнести абстрактные величины и практические наблюдения. Теория существует только в наших умах и не имеет иной реальности (что бы ни означало это слово).
Любая теория хороша, если она удовлетворяет двум требованиям:
точно описывает большой класс наблюдений на основе модели, содержащей всего несколько произвольных элементов;
позволяет делать точные предсказания о результатах будущих наблюдений.
Например, Аристотель признавал теорию Эмпедокла, согласно которой все состоит из четырех элементов: земли, воздуха, огня и воды. Это была достаточно простая теория, но она не позволяла делать никаких определенных предсказаний.
С другой стороны, теория всемирного тяготения Ньютона основана на еще более простой модели, согласно которой тела притягивают друг друга с силой, пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними. Но несмотря на свою простоту, эта теория с высокой точностью предсказывает движение Солнца, Луны и планет.
Любая физическая теория всегда условна, в том смысле, что она является лишь предположением: вы никогда не сумеете доказать ее. Сколько бы раз результаты экспериментов ни совпадали с предсказаниями теории, вы никогда не можете быть уверены, что в следующий раз между ними не возникнет противоречия. С другой стороны, одно‑единственное наблюдение, не согласующееся с предсказаниями теории, способно ее опровергнуть[3] .
Как подчеркивал философ науки Карл Поппер, хорошая теория отличается тем, что делает множество предсказаний, которые в принципе могут быть опровергнуты или, как говорят философы, фальсифицированы наблюдениями. Каждый раз, когда результаты новых экспериментов согласуются с предсказаниями теории, она выживает и наше доверие к ней увеличивается; но, если хоть одно наблюдение противоречит теории, мы должны ее отбросить или пересмотреть.
По крайней мере, предполагается, что так должно быть, однако вы всегда можете подвергнуть сомнению компетентность того, кто выполнял наблюдения.
На практике новая теория зачастую является развитием предыдущей. Например, очень точные наблюдения за планетой Меркурий обнаружили небольшие расхождения между ее реальным движением и тем, что предсказывает теория всемирного тяготения Ньютона. Предсказания общей теории относительности Эйнштейна немного расходятся с выводами теории Ньютона. То, что предсказания Эйнштейна, в отличие от ньютоновских, совпали с наблюдениями, стало одним из важнейших подтверждений новой теории. Однако мы по‑прежнему используем теорию Ньютона для практических задач, поскольку различие между ее предсказаниями и предсказаниями общей теории относительности очень невелики. (А кроме того, с теорией Ньютона намного проще работать, чем с теорией Эйнштейна!)
Конечная цель науки состоит в том, чтобы дать миру единую теорию, которая описывает всю Вселенную. Однако на практике ученые делят эту задачу на две части. Первую часть составляют законы, описывающие, как Вселенная изменяется со временем. (Если мы знаем состояние Вселенной в определенный момент времени, то эти физические законы скажут нам, каково будет ее состояние впоследствии.) Ко второй части относятся вопросы, касающиеся первоначального состояния Вселенной. Некоторые люди убеждены, что наука должна заниматься только первой частью, оставив вопрос о начальном состоянии метафизике или религии. Они говорят, что Бог, будучи всемогущим, мог дать начало Вселенной любым угодным Ему образом. Возможно и так, но тогда Он также мог заставить ее развиваться совершенно произвольным образом. Однако, похоже, что Творец предписал ей развиваться в строгом соответствии с определенными законами. Поэтому не разумнее ли предположить, что некие законы управляли и начальным состоянием Вселенной?
Оказывается, очень трудно одним махом изобрести теорию, описывающую всю Вселенную. Вместо этого мы разбиваем задачу на части и создаем множество частных теорий.
Каждая из этих теорий описывает и предсказывает некоторый ограниченный класс наблюдений, пренебрегая влиянием других соотношений или представляя их простыми наборами чисел. Возможно, этот подход является в корне неправильным. Если все во Вселенной взаимозависимо самым фундаментальным образом, то может статься, что нельзя подойти к полному решению, исследуя части проблемы по отдельности. Тем не менее, действуя таким способом в прошлом, ученые достигли известных успехов. Классический пример — все та же теория Ньютона, которая ставит гравитационное взаимодействие между двумя телами в зависимость только от одного их качества — массы, не принимая в расчет, из чего они сложены. Другими словами, нам не нужна теория внутреннего строения Солнца и планет для расчета их орбит[4] .
Сегодня ученые описывают Вселенную в терминах двух основных частных теорий — общей теории относительности и квантовой механики. Это величайшие достижения разума первой половины двадцатого столетия. Общая теория относительности описывает действие гравитации и крупномасштабную структуру Вселенной, то есть структуру на масштабах от нескольких километров до миллиона миллионов миллионов миллионов (единица с двадцатью четырьмя нулями) километров — размера наблюдаемой Вселенной[5] . Квантовая механика, напротив, имеет дело с предельно малыми масштабами, порядка миллионной доли от миллионной доли сантиметра (рис. 3). Увы, но известно, что эти две теории несовместимы друг с другом: вместе они не могут быть правильны. Одной из главных задач сегодняшней физики и главной темой этой книги является поиск новой теории — квантовой теории гравитации, которая включит в себя обе нынешние теории. Пока еще мы не располагаем такой теорией, и, быть может, нам предстоит еще долгий путь к ней, но нам уже известны многие из тех свойств, которыми она должна обладать. И мы покажем далее, что уже знаем солидное количество предсказаний, которые должна делать квантовая теория гравитации.