Учебное пособие: Векторная модель многоэлектронного атома
Удобно построить таблицу, в которой символически размещены микросостояния. Вдоль горизонтали таблицы расположим значения суммарного квантового числа MS и подобным же образом вдоль вертикали будем изменять значения суммарного орбитального числа ML.
В клетках этой таблицы разместим символы соответствующих микросостояний, представленных в предыдущей таблице. Это выглядит следующим образом:
ML | MS | +1 | 0 | -1 |
+2 | А | |||
+1 | Г | Г Г | Г | |
0 | Д | Б Д Д | Д | |
-1 | Е | Е Е | Е | |
-2 | В |
Удобство этой таблицы состоит в том, что она позволяет увидеть в деталях схему распределения микросостояний по квантовым числам. При соблюдении несложных правил возникает возможность построить приближённые волновые функции. Для качественного анализа такая детализация не нужна, и можно упростить картину, придав таблице вид:
ML | MS | +1 | 0 | -1 |
+2 | Û | |||
+1 | Û | ÛÛ | Û | |
0 | Û | ÛÛÛ | Û | |
-1 | Û | ÛÛ | Û | |
-2 | Û |
Произведём из неё выборку микросостояний, и сгруппируем их в следующие наборы:
1-я группа 2-я группа 3-я группа
В каждом из этих наборов суммарные характеристики микросостояний, т.е. квантовые числа ML и MS, определяющие проекции и орбитального, и спинового моментов импульса оболочки, последовательно пробегают все значения. В итоге микросостояния оказываются просто отдельными подсостояниями в таких наборах, каждый из которых характеризуется единым значением модуля вектора и независимо единым значением модуля вектора . Каждый такой набор микросостояний принадлежит к одному определённому коллективному электронному уровню энергии. Такой коллективный уровень называется терм.
Каждая терм характеризуется двумя суммарными квантовыми числами L и S, и на данной стадии анализа объединяет серию микросостояний оболочки атома. Кратность вырождения терма определяется числом принадлежащих ему микросостояний и равна произведению (2L+1)´(2S+1).
Номенклатура термов учитывает, прежде всего, два признака:
во-первых, величину орбитального момента импульса:
По величине суммарного L термы называются:
во-вторых, величину суммарного спина (мультиплетность)
По величине суммарного спина S вводится мультиплетность:
Символ атомного терма Рассел-Саундерса имеет вид
По этим признакам электронная конфигурация порождает 15 микросостояний электронной оболочки, которые группируются в три терма:
Пример 2: Первая возбужденная конфигурация атома Be(1s22s12p1). Микросостояния и термы.
Микросостояния электронной оболочки атома бериллия в основной и двух последующих возбуждённых конфигурациях: (2s2 ), (2s12p1), (2p2)
АО | 2s | 2p | ML | MS | ||
ml | 0 | +1 | 0 | -1 | ||
Конфигурация | ||||||
2s2 (основ) | | 0 | 0 | |||
А | | | +1 | +1 | ||
Б | | | 0 | +1 | ||
В | | | -1 | +1 | ||
Г | | | +1 | 0 | ||
Д | | | 0 | 0 | ||
2s12p1(1-я возб.) | Е | | | -1 | 0 | |
Ж | | | +1 | 0 | ||
З | | | 0 | 0 | ||
И | | | -1 | 0 | ||
К | | | +1 | -1 | ||
Л | | | 0 | -1 | ||
М | | | -1 | -1 | ||
| +2 | 0 | ||||
2p2 (2-я возб.) | | 0 | 0 | |||
| -2 | 0 |
Первая возбуждённая конфигурация атома содержит следующие микросостояния, которые группируются в два терма: и .
|
Спин-орбитальный эффект приводит к тому, что термы Рассел-Саундерса расщепляются на несколько подуровней, каждый из которых характеризуется внутренним квантовым числом, принимающим значения . Внутреннее квантовое число определяет модуль суммарного момента импульса электронной оболочки. Спин-орбитальный эффект возникает в том случае, когда оба из независимых моментов импульса электронной оболочки атома, орбитальный и спиновый не равны нулю. Если же хотя бы один из них равен нулю, то спин-орбитальный эффект не имеет места.
Низший из атомных термов на шкале энергии (основной) определяется на основе трёх правил Хунда.
1-е правило Хунда: В пределах орбитальной конфигурации основной терм обладает максимальной мультиплетностью.
2-е правило Хунда: Если в пределах орбитальной конфигурации у нескольких термов мультиплетность одинакова, то у основного терма орбитальный момент наибольший и квантовое число L максимальное.
3-е правило Хунда: В пределах конфигурации у низшего терма внутреннее квантовое число J минимальное (нормальный терм), если оболочка атома заполнена менее, чем наполовину, и, число J максимальное при заполнении оболочки более, чем наполовину (обращённый терм).
Символы атомного терма Рассел-Саундерса, учитывающие спин-орбитальный эффект, записываются в виде . Эти термы отражают схему последовательных приближений в учёте различных слагаемых полной энергии коллектива электронов в атомной оболочке.
Резюме: Начальное приближение называют одноэлектронным приближением, а в теории атома его же называют принципом водородоподобия. В одноэлектронном (нулевом) приближении все электроны рассматриваются независимо. Энергия взаимного отталкивания электронов частично учитывается искусственным способом в виде эффекта экранирования ядра «внутренними» электронами.
Эффект экранирования положительно заряженного ядра отрицательно заряженным электронным облаком учитывается тем, что в формуле потенциальной энергии электростатического притяжения одиночного электрона к ядру заряд ядра уменьшается на некоторую функцию экранирования, зависящую и от заряда ядра и от совокупности квантовых чисел.