Ответ(ы) на вопрос:
Гость
4cos²x + 4sinx - 1 = 0
Используем основное тригонометрическое тождество:
4 - 4sin²x + 4sinx - 1 = 0
-4sin²x + 4sinx + 3 = 0
4sin²x - 4sinx - 3 = 0
Пусть t = sinx, t ∈ [-1; 1].
4t² - 4t - 3 = 0
D = 16 + 4•4•3 = 48 + 16 = 64 = 8²
t1 = (4 + 8)/8 = 12/8 - не уд. условию
t2 = (4 - 8)/8 = -4/8 = -1/2
Обратная замена:
sinx = -1/2
x = (-1)ⁿ+¹π/6 + πn, n ∈ Z
Ответ: х = (-1)ⁿ+¹π/6 + πn, n ∈ Z.
Не нашли ответ?
Похожие вопросы