Я прошу вас, решите пожжжалуйста эту задачу. Найдите наибольшее значение функции f(x)=x+4/x-1 на отрезке [-2;0]
Я прошу вас, решите пожжжалуйста эту задачу. Найдите наибольшее значение функции f(x)=x+4/x-1 на отрезке [-2;0]
Ответ(ы) на вопрос:
При подходе к х=0 слева значение функции стремится к +бесконечности. -ведь 1/х имеет разрыв при х=0 (переходит слева от + беск до справа -бесконечность. Поэтому можно не учитывать х-1 (это пренебрежимо мАлые величины в сравн с бесконечностью. ИТОГО: при подходе к х=0 слева значение функции стремится к + бесконечности - а это уж действительно НАИБОЛЬШЕЕ ЗНАЧЕНИЕ ФУНКЦИИ! == пусть коллега проверит значение функции в точках -0.1 -0.01 -0.001 - получится побольше, чем тройка! ! Ха-Ха! Тут коллега заметил тройку и "не заметил" плюс бесконечность.. . ХА-ХА! Он считает, если бесконечность необьятная, то её можно не замечать.... например нельзя заметить Землю, а комарика учитывать обязательно!! ! Я понимаю, что укус комара болит, но ведь Земля удерживает всех комариков, рыб, птиц, океаны и твердь своим притяжением! ! ----------------- кОГДА Я ОКАНЧИВАЛ ШКОЛУ В 70-ОМ ГОДУ. ПО ДОРОГЕ ДОМОЙ УСТНО ИССЛЕДОВАЛ ФУНКЦИИ ТИПА СИНУС ЛОГАРИФМА ИКС, логарифм тангенса икс, и проч.... а Ваш пример уж очень простенький.
Эта функция определена не во всех точках отрезка [-2; 0]. На промежутке [-2; 0) f(x) =< -5. x + 4/x =< -4, при x < 0.
Найдем производную данной функций f `(x)=1-4/x^2=0 и приравняем к нулю X1=-2 X2=2 Находим значения функций в точках -2 0 и 2 f(-2)=-5 f(0) не существет f(2)=3 Наибольшее значение 3
Не нашли ответ?
Похожие вопросы