Через точку A проведены две касательные к окружности w; M и N - точки касания. Известно, что AM=6 и MN=5. Найдите: а) радиус окружности б) длину дуги окружности w, находящейся вне треугольника AMN
Через точку A проведены две касательные к окружности w; M и N - точки касания. Известно, что AM=6 и MN=5. Найдите: а) радиус окружности б) длину дуги окружности w, находящейся вне треугольника AMN
Ответ(ы) на вопрос:
Гость
а) Проведем АО (О - центр окр.).Пересечение АО и MN - точка К. MK = KN = 2,5. Пусть ON = OM = R. Тогда: Из пр.тр-ка AON: AO^2 - R^2 = 36 (AN = AM = 6). AO*2,5 = 6R (гипотенуза умн. на высоту равна произведению катетов). AO = 6R/2,5 = 2,4R 5,76R^2 - R^2 = 36 R = 6/кор4,76 = 2,75 (с точностью до 5-го знака после запятой) Ответ: 6/кор4,76 = 30/кор119 = 2,75 (специально даю разные вариации одного и того же ответа - первые два - точные, но громоздкие, последний - приближенный, но очень с высокой степенью точности). б)Продлим АО до пересечения с другой точкой окр. w - точка В. Итак необходимо найти длину дуги MNB. Сначала найдем угловую меру. MBN = 2П - MON = 2П - х. х = ? Из тр-ка MON: sin(x/2) = 2,5/R = 2,5/2,75 = 10/11 = 0,91 x = 2arcsin(0,91) MBN = 2П - 2arcsin(0,91) радиан Длина дуги: {[2П - 2arcsin(0,91)]/2П} * 2ПR = 2ПR - 2Rarcsin0,91 = 2R(П - arcsin(0,91)) = =5,5*(П - 1,14) = 11 Ответ: 5,5(П - arcsin(0,91)) = 11.
Не нашли ответ?
Похожие вопросы