Докажите, что при любом нечетном n значение многочлена n^3 - n делится на 24.

Докажите, что при любом нечетном n значение многочлена n^3 - n делится на 24.
Гость
Ответ(ы) на вопрос:
Гость
n³-n=n(n²-1)=n(n-1)n+1)=(n-1)·n·(n+1) n-нечетное число по условию, ⇒(n-1) и (n+1) -числа четные., допустим, что число (n-1) делится на 2, тогда число (n+1) должно делиться на 4 или наоборот. Значит произведение (n-1)(n+1) делится 8. Рассмотрим любых три числа, которые последовательно возрастают на единицу., как в нашем случае. Среди этих чисел обязательно найдется число, которое делится на три. Мы получили, что наша последовательность чисел делится на 8 и на 3, а значит на 24.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы