Найдите интервалы возрастания и убывания функции f(x) =x^3 - x^2-x+2
Найдите интервалы возрастания и убывания функции f(x) =x^3 - x^2-x+2
Ответ(ы) на вопрос:
Гость
Найдем производную данной функции:
f'(x)=3x²-2x-1
Найдем где производная больше нуля, а где меньше, ведь где производная больше нуля, там функция возрастает, а где меньше - убывает.
3x²-2x-1=3(x-1)(x+1/3)
(см. вложение)
Значит, если x∈(-∞;-1/3]∪[1;+∞), то функция возрастает, если x∈(-1/3;1), то функция убывает.
Не нашли ответ?
Похожие вопросы