Система: х^2 + y^2=a 2xy=2a-1 задание: при каких а система имеет ровно 2 корня ?

Система: х^2 + y^2=a 2xy=2a-1 задание: при каких а система имеет ровно 2 корня ?
Гость
Ответ(ы) на вопрос:
Гость
Автору: выражая х через у из 2-го уравнения и подставляя в первое и преобразуя логарифм, имеем:  a^(2y -2) = (2 - 2y). И заменяя (2 - 2y) на z, получим:  1 / (a^z) = z. Отсюда один вариант: а = 1 и z =1.  Второй: а = корень из 2 и z = 2. --> y = 0, x = 4.  Хм. И далее а = корень куб из 3 и z = 3. --> y = -1/2, x = 9/2.  а = корень 4-й из 4 и z = 4. --> y = -1, x = 5.  Так. И вообще: а = корень n-й из n и z = n.  Но насчет двух решений не поняла. Всегда одно.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы