Сколько и какие корни имеет уравнение: cos(2x+pi/2)sqrt(10-x^2-1)=0
Сколько и какие корни имеет уравнение: cos(2x+pi/2)sqrt(10-x^2-1)=0
Ответ(ы) на вопрос:
Гость
Произведение двух множителей равно 0 тогда и только тогда, когда хотя бы один из них равен 0, а другой при этом не теряет смысла.
ОДЗ:
{10-x²-1≥0 ⇒ 9-x²≥0 _-_[-3]_+_[3]_-_ ⇒ -3≤x≤3
cos(2x+(π/2))=0
2x+(π/2)=(π/2)+πk, k∈Z
2x=πk, k∈Z
x=(π/2)·k, k∈Z
Найдем корни удовлетворяющие неравенству -3≤x≤3:
-3 ≤ (π/2)·k ≤ 3, k∈Z;
-2< -6/π ≤ k ≤ 6/π<2- неравенство верно при k=-1; k=0; k=1.
x=-π/2; x=0; x= π/2 - корни уравнения.
√(10-х²-1)=0 ⇒ х=-3 или х=3
х=-3; х=3 - корни уравнения.
О т в е т. -3;-π/2; 0; π/2; 3.
Не нашли ответ?
Похожие вопросы