Дипломная работа: Агроэкология черноземов южных на склонах
В2 горизонт затеков, неоднородный, бурый с серыми потеками, влажный, призматический, средний суглинок, плотный, тонкопористый, корни растений, вскипает от соляной кислоты, карбонаты в виде пропитки, переход заметный.
В3 карбонатный горизонт, белесовато-бурый с белыми пятнами, холодит, призматический, средний суглинок, плотный, тонкопористый, корни растений, вскипает от соляной кислоты, карбонаты в виде белоглазки, переход заметный.
С ниже 66 см аналогичен горизонту С разреза 1.
Почва: чернозем южный маломощный легкосуглинистый среднеэродированный на делювиальном суглинке.
Разрез 4 (пашня, нижняя часть склона).
АПАХ пахотный горизонт, темно-серый, сухой, комковато-пылеватый, тяжелый суглинок, рыхлый, тонкопористый, пожнивные остатки и корни растений, переход заметный по плотности.
А гумусово-аккумулятивный, темно-серый, влажный, призматически-комковатый, тяжелый суглинок, корней много, переход очень постепенный. В1 гумусово-переходный, темно-серый с буроватым оттенком, влажный, ореховатый, тяжелый суглинок, плотный, тонкопористый, корней много, переход очень постепенный.
В2 горизонт затеков, неоднородный по цвету, бурый с белесоватым оттенком, с серыми затеками, влажный, комковато-ореховатый, плотный, тяжелый суглинок, тонкопористый, вскипает от соляной кислоты, карбонаты в виде пятен и пропитки, корни, переход постепенный.
В3 карбонатный горизонт, бурый с белесыми пятнами, влажный, призматический, тяжелый суглинок, плотный, бурно вскипает, карбонаты в виде белоглазки, переход заметный.
С ниже 107 см аналогичен горизонту С разреза 1.
Почва: чернозем южный мощный тяжелосуглинистый на делювиальном суглинке.
По представленным выше морфологическим описаниям разрезов видно, что по склону меняется цвет поверхностных горизонтов почвы. Самая темная почва (темно-серая) находится в нижней части склона, самая светлая – в средней части склона (рисунок 4). По склону меняется не только окраска верхнего пахотного горизонта, но и мощность гумусового горизонта (А+В1): в верхней части склона она составляет 42 см, в средней части – 30 см, в нижней части склона – 57 см. Также видно, что при сельскохозяйственном использовании мощность гумусового горизонта уменьшается на 5 см (таблица 3).
Глубина вскипания от соляной кислоты и глубина максимального накопления карбонатов также различны: в верхней части склона – 41 см и 65 см, в средней – 32 см и 41 см, в нижней – 68 см и 81 см соответственно.
На целине глубина вскипания от соляной кислоты и глубина максимального накопления карбонатов ниже, в сравнении с аналогом в пашне (45 см и 68 см соответственно).
Уменьшение мощности гумусового горизонта, повышение глубины вскипания от соляной кислоты и максимальной глубины накопления карбонатов в пашне, по сравнению с аналогом на целине, свидетельствует о негативном влиянии сельскохозяйственной деятельности на почву.
В средней части склона, крутизна которого составляет 7О, эрозионные процессы проявляются наиболее сильно. Здесь наименьшая мощность гумусового горизонта (30 см), а карбонаты залегают выше (41 см), чем в других разрезах.
В нижней части склона морфологические признаки почв свидетельствуют о наличии процессов аккумуляции продуктов смыва.
Гранулометрический состав. Этот показатель является одним из факторов плодородия. Он влияет на многие агрономические свойства, такие как водопроницаемость, плотность почвы, теплоемкость, поглотительная способность и другие (В.Ф. Моисейченко, 1996).
Поэтому необходимо рассмотреть, как меняется гранулометрический состав по склону: в верхней части склона почва среднесуглинистая, в средней части – легкосуглинистая и в нижней части – тяжелосуглинистая (таблица 3).
Такие изменения гранулометрического состава объясняются смывом водой и сносом ветром мельчайших частиц со склона вниз, где они и аккумулируются.
Заметны изменения в профилях чернозема южного после распашки в отношении гранулометрического состава. Горизонт АПАХ в верхней части склона, в сравнении с горизонтом А на целине, становится легче (таблица 3). Это связано с воздействием сельскохозяйственной техники на почвенную структуру.
Плотность сложения почвы зависит от упаковки почвенных частиц, гранулометрического состава и содержания органического вещества.
Исследованные черноземы южные после весенней обработки имеют благоприятную плотность сложения (1,03-1,10 г/см3) в пахотном горизонте по всему склону (таблица 3). Однако в подпахотном горизонте плотность резко возрастает (1,26-1,40 г/см3), что является результатом постоянной обработки почвы на одинаковую глубину.
Содержание гумуса также повлияло на плотность подпахотного горизонта (таблица 3). Так, в средней части склона, при пониженном содержании гумуса (2%), плотность составила 1,40 г/см3, в то время как в нижней и верхней частях склона при более высоком содержании гумуса (5,6% и 4,0% соответственно) плотность почвы ниже – 1,26 г/см3 и 1,32 г/см3.
Увеличение плотности в средней части склона объясняется и облегчением гранулометрического состава (таблица 3) вследствие смыва мелкозема.
В нижележащих горизонтах плотность сложения увеличивается в соответствии с уменьшением содержания органического вещества и составляет 1,45-1,51 г/см3.
На целине изменение плотности по профилю идет менее резко по сравнению с аналогом в пашне (таблица 3). Это объясняется отсутствием механических обработок и более равномерным распределением корневых систем растений.
Плотность твердой фазы увеличивается вниз по профилю в соответствии с падением содержания гумуса (таблица 3). Рассматривая её изменения в зависимости от рельефа видно, что плотность твердой фазы почвы при аккумуляции органического вещества в нижней части склона понижается (2,58 г/см3), а на эродированном склоне при сносе органики происходит её увеличение (2,63 г/см3).
Плотность твердой фазы в горизонте А на целине ниже в сравнении с аналогом в пашне (таблица 3). Это объясняется снижением содержания гумуса при распашке.