Дипломная работа: Альтернативні джерела енергії
Гідроелектростанції класифікуються по потужності на дрібних (зі встановленою електричною потужністю до 0,2 Мвт), малих (до 2 Мвт), середніх (до 20 Мвт) і великих (понад 20 Мвт). Другий критерій, по якому розділяються гідроелектростанції, – натиск. Розрізняють низьконапірні (натиск до 10 м), середнього натиску (до 100 м) і високонапірні (понад 100 м). У окремих випадках дамби високонапірних ГЕС досягають висоти 240 м. Такі дамби зосереджують перед турбінами водну енергію, накопичуючи воду і піднімаючи її рівень.
Турбіна – енергетично дуже вигідна машина, тому що вода легко і просто міняє поступальну ходу на обертальну. Той же принцип часто використовують і в машинах, які зовні зовсім не схожі на водяне колесо (якщо на лопатки впливає пара, то мова йде про паровій турбіні).
Переваги гідроелектростанцій очевидні – постійно поновлюваний самою природою запас енергії, простота експлуатації, відсутність забруднення навколишнього середовища. Проте споруда дамби крупної гідроелектростанції виявилася завданням куди складнішою, ніж споруда невеликої. Щоб привести в обертання могутні гідротурбіни, потрібно накопичити за дамбою величезний запас води. Для споруди дамби потрібно укласти таку кількість матеріалів, що об'єм гігантських єгипетських пірамід в порівнянні з ним покажеться нікчемним.
Але поки людям служить лише невелика частина гідроенергетичного потенціалу землі. Щорічно величезні потоки води, що утворилися від дощів і танення снігів, стікають в моря невикористаними. Якби вдалося затримати їх за допомогою дамб, людство отримало б додатково колосальну кількість енергії.
Енергія світового океану
Різке збільшення цін на паливо, труднощі з його отриманому, повідомлення про виснаження паливних ресурсів – всі ці видимі ознаки енергетичної кризи викликали останніми роками в багатьох країнах значний інтерес до нових джерел енергії, зокрема до енергії Світового океану.
Теплова енергія океану
Відомо, що запаси енергії в Світовому океані колосальні, адже дві третини земної поверхні (361 млн. км2) займають моря і океани – акваторія Тихого океану складає 180 млн. км2. Атлантичного – 93 млн. км2, Індійського, – 75 млн. км2.
Останні десятиліття характеризується певними успіхами у використанні теплової енергії океану. Так, створені установки міні-ОТЕС і ОТЕС-1 (ОТЕС – початкові букви англійських слів Осеаn Тhеrmal Energy Conversion, тобто перетворення теплової енергії океану – мова йде про перетворенні в електричну енергію). У серпні 1979 р. поблизу Гавайських островів почала працювати теплоенергетична установка міні-ОТЕС. Пробна експлуатація установки протягом трьох з половиною місяців показала її достатню надійність. При безперервній цілодобовій роботі не було зривів, якщо але вважати дрібних технічних неполадок, що зазвичай виникають при випробуваннях будь-яких нових установок. Її повна потужність складала в середньому 48,7 кВт, максимальна –53 кВт; 12 кВт (максимум 15) установка віддавала в зовнішню мережу на корисне навантаження, точніше – на зарядку акумуляторів. Решта потужності, що виробляється, витрачалася на власні потреби установки. До їх числа входять витрати анергії на роботу трьох насосів, втрати в двох теплообмінниках, турбіні і в генераторі електричної енергії.
Три насоси було потрібно з наступного розрахунку: один – для подачі теплою види з океану, другий – для підкачки холодної води з глибини близько 700м, третій – для перекачування вторинної робочої рідини усередині самої системи, тобто з конденсатора у випарник. Як вторинна робочий рідини застосовується аміак.
Вперше в історії техніки установка міні-ОТЕС змогла віддати в зовнішнє навантаження корисну потужність, одночасно покривши і власні потреби. Досвід, отриманий при експлуатації міні-ОТЕС, дозволив швидко приступити до проектування ще могутніших систем подібного типу.
Енергія приливів і відливів.
Століттями люди роздумували над причиною морських приливів і відливів. Сьогодні ми достовірно знаємо, що могутнє природне явище – ритмічний рух морських вод викликають сили тяжіння Місяця і Сонця. У морських просторах приливи чергуються з відливами теоретично через 6 год. 12 хв. 30 с. Якщо Місяць, Сонце і Земля знаходяться на одній прямій, Сонце своїм тяжінням підсилює дію Місяця, і тоді наступає сильний прилив. Коли ж Сонце стоїть під прямим кутом до відрізка Земля-Місяць (квадратура), наступає слабкий прилив (квадратура, або мала вода). Сильний і слабкий приливи чергуються через сім днів.
Проте дійсний хід приливу і відливу вельми складний. На нього впливають особливості руху небесних тіл, характер берегової лінії, глибина води, морські течії і вітер.
Найвищі і сильніші приливні хвилі виникають в дрібних і вузьких затоках або гирлах річок, що впадають в моря і океани. Приливна хвиля Індійського океану котиться проти перебігу Гангу на відстань 250 км. від його гирла. Приливна хвиля Атлантичного океану розповсюджується на 900 км. вгору по Амазонки. У закритих морях, наприклад Чорному або Середземному, виникають малі приливні хвилі заввишки 50-70 див.
Максимально можлива потужність в одному циклі підливши – відливши, тобто від одного приливу до іншого, виражається рівнянням:
де р – щільність води, g – прискорення сили тяжіння, S – площа приливного басейну, R – різниця рівнів при приливі.
Як видно з (формули, для використання приливної енергії найбільш відповідними можна рахувати такі місця на морському побережжі, де приливи мають велику амплітуду, а контур і рельєф берега дозволяють влаштувати великі замкнуті “басейни”.
Потужність електростанцій в деяких місцях могла б скласти 2–20 Мвт.
Перша морська приливна електростанція потужністю 635 кВт була побудована в 1913 р. в бухті Ліверпуля.
Енергія морських течій
Невичерпні запаси кінетичної енергії морських течій, накопичені в океанах і морях, можна перетворювати на механічну і електричну енергію за допомогою турбін, занурених у воду (подібно до вітряних млинів, “занурених” в атмосферу).
Найважливіша і найвідоміша морська течія – Гольфстрім.
В даний час у ряді країн, і в першу чергу в Англії, ведуться інтенсивні роботи по використанню енергії морських хвиль. Британські острови мають дуже довгу берегову лінію, до в багатьох місцях море залишається бурхливим протягом тривалого часу.
Один з проектів використання морських хвиль заснований на принципі водяного стовпа, що коливається. У гігантських “коробах” без дна і з отворами вгорі під впливом хвиль рівень води то піднімається, то опускається. Стовп води діє на зразок поршня: засмоктує повітря і нагнітає його в лопатки турбін. Головну трудність тут складає узгодження інерції робочих коліс турбін з кількістю повітря в коробах, так щоб за рахунок інерції зберігалася постійною швидкість обертання турбінних валів в широкому діапазоні умов на поверхні морить.
Енергія сонця.
Для стародавніх народів Сонце було богом.
Своєю життєдайною силою Сонце завжди викликало у людей відчуття поклоніння і страху. Народи, тісно пов'язані з природою, чекали від нього милостивих дарів – урожаю і достатку, гарної погоди і свіжого дощу або ж кари – негоди, бур, граду. Тому в народному мистецтві ми усюди бачимо зображення Сонця: над фасадами будинків, на вишивках, в різьбленні і т.п.
Майже всі джерела енергії, про які ми до цих пір говорили, так або інакше використовують енергію Сонця: вугілля, нафта, природний газ суть не що інше, як “законсервована” сонячна енергія. Вона поміщена в цьому паливі з незапам'ятних часів; під дією сонячного тепла і світла на Землі росли рослини, накопичували в собі енергію, а потім в результаті тривалих процесів перетворилися на паливо, що вживалося сьогодні. Сонце щороку дасть людству мільярди тонн зерна і деревини. Енергія річок і гірських водопадів також походить від Сонця, яке підтримує кругообіг води на Землі.
У всіх приведених прикладах сонячна енергія використовується побічно, через багато проміжних перетворень. Принадно було б виключити ці перетворення і знайти спосіб безпосередньо перетворювати теплове і світлове випромінювання Сонця, падаюче на Землю, в механічну або електричну енергію. Всього за три дні Сонце посилає на Землю стільки енергії, скільки її міститься у всіх розвіданих запасах викопних палив, а за 1 з – 170 млрд. Дж. Велику частину цієї енергії розсіює або поглинає атмосфера, особливо хмари, і лише третина її досягає земній поверхні. Вся енергія, що випускається Сонцем, більше тієї її частині, яку отримує Земля, в 5000000000 разів. Але навіть така “нікчемна” величина в 1600 разів більше енергії, яку дає решта всіх джерел, разом узяті. Сонячна енергія, падаюча на поверхню одного озера, еквівалентна потужності крупної електростанції.
Сьогодні для перетворення сонячного випромінювання в електричну енергію ми маємо в своєму розпорядженні дві можливості: використовувати сонячну енергію як джерело тепла для вироблення електроенергії традиційними способами (наприклад, за допомогою турбогенераторів) або ж безпосередньо перетворювати сонячну енергію в електричний струм в сонячних елементах. Сонячну енергію використовують також після її концентрації за допомогою дзеркал – для плавлення речовин, дистиляції води, нагріву, опалювання і т.д.
Оскільки енергія сонячного випромінювання розподілена за великою площею (іншими словами, має низьку щільність), будь-яка установка для прямого використання сонячної енергії повинна мати збираючий пристрій (колектор) з достатньою поверхнею.
Простий пристрій такого роду – це колектор, чорна плита, добре ізольована знизу. Вона прикрита склом або пластмасою, яка пропускає світло, але не пропускає інфрачервоне теплове випромінювання. У просторі між плитою і склом найчастіше розміщують чорні трубки, через які течуть вода, масло, ртуть, повітря, сірчистий ангідрид і т.п. Сонячне випромінювання, проникаючи через скло або пластмасу в колектор, поглинається чорними трубками і плитою і нагріває робочу речовину в трубках. Теплове випромінювання не може вийти з колектора, тому температура в нім значно вища (па 200–500°С), ніж температура навколишнього повітря. У цьому виявляється так званий парниковий ефект. Звичайні садові парники, по суті справи, є простими колекторами сонячного випромінювання. Але чим далі від тропіків, тим менш ефективний горизонтальний колектор, а повертати його услід за Сонцем дуже важко і дорого. Тому такі колектори, як правило, встановлюють під певним оптимальним кутом на південь.