Дипломная работа: Диэлектрические композиты на основе модифицированного субмикронного титаната бария и цианового эфира ПВС

4.5 Влияние модифицирования BaTiO3 оксидными добавками на структуру поверхностного слоя композитов

5. ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

ЛИТЕРАТУРА

ПРИЛОЖЕНИЕ А

ПРИЛОЖЕНИЕ Б

ПРИЛОЖЕНИЕ В

ВВЕДЕНИЕ

Полимерно-неорганические композиты находят широкое применение в различных областях техники благодаря сочетанию свойств полимера и функционального наполнителя, что позволяет получать материалы с регулируемыми характеристиками в зависимости от отношения компонентов, размера частиц наполнителя и условий синтеза. Применение композитов позволяет сочетать достоинства полимерной матрицы (гибкость, устойчивость к механическим воздействиям) и высокие электрофизические свойства твердотельных функциональных наполнителей, создавать гибкие технологии и снижать себестоимость изделий электронной техники. Поскольку свойства композитов определяются структурой межфазного слоя, то они в значительной степени зависят от величины поверхности наполнителя и содержания функциональных групп.

В связи с этим модифицирование и оптимизация функционального состава поверхности наполнителей являются эффективным подходом к получению композитов с заданными характеристиками, что обусловливает актуальность и практическую значимость работы.

Композиты на основе матрицы из цианэтилового эфира поливинилового спирта (ЦЭПС) с диспергированным в ней титанатом бария (BaTiO3 ) применяют в качестве защитного диэлектрического слоя в электролюминесцентных источниках света. Одной из важнейших характеристик этих материалов является высокая диэлектрическая проницаемость (e ). В данной работе исследована возможность повышения диэлектрической проницаемости рассматриваемых композитов путем модифицирования поверхности субмикрочастиц BaTiO3 оксидными наноструктурами.

1. АНАЛИТИЧЕСКИЙ ОБЗОР

1.1 Органо-неорганические композиционные материалы

Композиционные материалы (композиты) – многокомпонентные материалы, как правило, состоящие из пластичной основы (матрицы), армированной наполнителями (дисперсными, волокнистыми, хлопьевидными и т.д.), обладающими специфическими свойствами (например, высокой прочностью, жесткостью и т.д.) [1]. Сочетание разнородных веществ приводит к созданию нового материала, свойства которого количественно и качественно отличаются от свойств каждого из его составляющих. Варьирование состава матрицы и наполнителя, их соотношения, а также степени дисперсности и других характеристик наполнителя позволяет получать широкий спектр материалов с требуемым набором свойств. По сравнению с рядом других классов материалов композиты отличаются легкостью в сочетании с улучшенными механическими свойствами [2-4]. Использование композитов обычно позволяет уменьшить массу конструкции при сохранении или улучшении ее механических характеристик.

Подбор оптимального соотношения между компонентами и регулирование их физико-химических характеристик обеспечивает получение композиционных материалов с требуемыми значениями прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создание композиций с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами.

Выделяют два основных вида полимерных связующих (матриц) – на основе термореактивных и термопластичных полимеров. В последние годы в качестве связующих все шире применяют также смеси на основе обоих типов полимеров, а также различные типы модифицированных связующих [5].

Наряду со связующим, важнейшим элементом структуры полимерных композиционных материалов являются наполнители. Функции наполнителя в полимерных композиционных материалах весьма разнообразны – от формирования комплекса механических свойств до придания материалу разнообразных специфических свойств [5]. Наполнитель определяет прочность, жесткость и деформируемость материала, а матрица обеспечивает его монолитность, передачу напряжения в наполнителе и стойкость к различным внешним воздействиям. В зависимости от типа наполнителя композиционные материалы с полимерной матрицей делятся на стеклопластики, углепластики, органопластики, текстолиты, композиты с порошковыми наполнителями и т.д. [6]. Использование наполнителей позволяет изменять механические, электромагнитные, физико-химические характеристики исходного полимера, а, в ряде случаев, и снижать стоимость конечного композита по сравнению со стоимостью полимера за счет использования более дешевого, чем полимер, наполнителя.

Полимерные композиционные материалы называют также гибридными материалами , полученными за счет взаимодействия химически различных составляющих (компонентов), формирующих определенную структуру, отличающуюся от структур исходных реагентов, но часто наследующую определенные мотивы и функции исходных структур [7].

Основные методы получения гибридных материалов – интеркаляционный, темплатный синтез, золь-гель процесс, гидротермальный синтез. Для природных композитов размер неорганических частиц лежит в пределах от нескольких микрон до нескольких миллиметров, в результате чего материал становится неоднородным, что иногда можно заметить даже невооруженным глазом. Если уменьшать размер неорганических частиц такого материала до размера молекул органической части (нескольких нанометров), то можно повысить однородность композита и получить улучшенные или даже абсолютно новые свойства материала. Такие композиты часто называют гибридными наноматериалами [7].Неорганическими строительными блоками таких материалов могут являться наночастицы, макромолекулы, нанотрубки, слоистые вещества (включая глины, слоистые двойные гидроксиды, некоторые ксерогели).

Применение композиционных материалов обеспечивает новый качественный скачок в увеличении мощности двигателей, энергетических и транспортных установок, уменьшении массы машин и приборов.

Существует возможность введения в такие композиты дополнительных компонентов, что придает покрытию специфические, например, гидрофобные свойства. Гибридные твердые электролиты сочетают ионо- и электронопроводящие свойства различных органических молекул с термостойкостью и прочностью неорганической матрицы.

По структуре композиты делятся на несколько основных классов: волокнистые, слоистые, дисперсно-упрочненные, упрочненные частицами и нанокомпозиты.

Волокнистые полимерные композиты состоят из армирующего волокнистого наполнителя и полимерной матрицы (связующего). Уже небольшое содержание наполнителя в композитах такого типа приводит к появлению качественно новых механических свойств материала. Широко варьировать свойства материала позволяет также изменение ориентации размера и концентрации волокон. Свойства волокнистых полимерных композитов существенно зависят от составляющих их компонентов; их состава и свойств, взаимного расположения, свойств межфазной границы раздела, а в некоторых случаях от диффузии компонентов матрицы в волокна [8].

В слоистых композиционных материалах матрица и наполнитель расположены слоями, как, например, в особо прочном стекле, армированном несколькими слоями полимерных пленок.

Микроструктура остальных классов композиционных материалов характеризуется тем, что матрицу наполняют частицами армирующего вещества, а различаются они размерами частиц. В композитах, упрочненных частицами , их размер больше 1 мкм, а содержание составляет 20–25% (по объему), тогда как дисперсно-упрочненные композиты включают в себя от 1 до 15% (по объему) частиц размером от 0,01 до 0,1 мкм. Размеры частиц, входящих в состав нанокомпозитов – нового класса композиционных материалов – еще меньше и составляют 10–100 нм. В качестве добавки к полимерной матрице в нанокомпозитах используются различные нанонаполнители, как по химическому составу, так и морфологии. Свойства композитов такого типа могут изменяться при очень малых изменениях концентрации наполнителя благодаря его большой удельной поверхности и интенсивному межмолекулярному взаимодействию с полимером.

Свойства композитов во многом определяются, помимо других параметров, площадью поверхности раздела и интенсивностью межмолекулярного взаимодействия между материалами матрицы и наполнителя. Поскольку частицы нанонаполнителя преимущественно имеют размер менее 100 нм, то их более высокая удельная поверхность по сравнению с наполнителями с более крупными частицами позволяет существенным образом снизить степень наполнения композита. Переход к наноразмерности наполнителя при оптимизации параметров синтеза позволяет не только сократить его удельный расход, но и получать материалы с более высокими эксплуатационными характеристиками.

К наиболее распространенным нанонаполнителям могут быть отнесены: слоистые алюмосиликаты (глины), углеродные нанотрубки и нановолокна, ультрадисперсные алмазы (наноалмазы), фуллерены, неорганические нанотрубки, наночастицы оксида кремния, карбоната кальция, а также металлические наночастицы. Одной из важнейших задач при использовании нанонаполнителей является обеспечение их равномерного распределения в матрице композита.

Механические свойства композитов зависят от структуры и свойств межфазной поверхности. Так, сильное межфазное взаимодействие между матрицей и наполнителем обеспечивает высокую прочность материала, а значительно более слабое — ударную прочность. Наблюдаемая тенденция к улучшению свойств наполнителя (усиливающего элемента) при уменьшении его размеров объясняется снижением его макроскопической дефектности. Физические свойства обычного композита, в отличие от нанокомпозита, не могут превосходить свойств чистых компонентов [9].

1.2 Диэлектрические материалы

1.2.1 Основные виды диэлектрических материалов

К-во Просмотров: 292
Бесплатно скачать Дипломная работа: Диэлектрические композиты на основе модифицированного субмикронного титаната бария и цианового эфира ПВС