Дипломная работа: Дослідження розвитку теорії ймовірності

У своїй книзі «Теорія ймовірностей» С.Н. Бернштейн спробував увести визначення поняття ймовірності аксіоматичним способом.

З аксіоми порівняння ймовірностей і аксіоми про несумісні події Бернштейн робить наступний висновок: «Якщо події X сприяють m випадків із загального числа всіх n єдино можливих, несумісних і рівно можливих випадків, то ймовірність події X залежить тільки від чисел m і n (а не від природи розглянутого досвіду), тобто ймовірність X=F (m, n), де F (m, n) є деяка певна функція».

Але, цим аксіомам задовольняє тільки функція виду F( ), причому-це зростаюча функція дробу . Будь-яку таку функцію F( ) можна прийняти за ймовірність X. Загальноприйняте вважати F( )= . Це і є ймовірність події X у висловлених умовах, а точніше класичне визначення ймовірності.

Із упевненістю можна сказати, що визначення поняття ймовірності лежить в основі будь-якої аксіоматичної системи теорії ймовірностей. На недоліки класичного визначення ймовірності вказували давно. Були видні й недоліки суб'єктивного трактування ймовірності, що йде від Лапласа. Критикові цих недоліків зустрічали доброзичливо. Найбільш широке поширення одержали роботи в цьому напрямку німецького вченого Р. Мизеса (1883–1953 р.), що з гітлерівської Німеччини емігрував у США, де він очолив Інститут прикладної математики. Мизес є засновником так званої частотної концепції в теорії ймовірностей.

Основним поняттям у частотній теорії Мизеса є поняття колективу. Під колективом розуміється нескінченна послідовність k-однакових спостережень, кожне з яких визначає деяку крапку, що належить заданому простору кінцевого числа вимірів. Говорити про ймовірність, по Мизесу, можна тільки тоді, коли існує ця певна сукупність подій. Колектив, по Мизесу, "...повинен задовольняти наступним двом вимогам:

відносні частоти появи певної події в послідовності незалежних випробувань мають певні граничні значення;

граничні значення, про які говориться в першій вимозі, залишаються незмінними, якщо із всієї послідовності вибрати будь-яку підпослідовність.

Взявши за основу той факт, що ймовірність і частота - зв'язані між собою величини, Мизес визначає ймовірність як граничне значення частоти: «Обґрунтоване припущення, що відносна частота появи кожного одиничного спостережуваної ознаки прагне до певного граничного значення. Це граничне значення ми називаємо ймовірністю».

Але насправді ніякого обґрунтованого припущення в нас немає. Ми ніколи не можемо знати, чи має дана частота чи межа ні, хоча б уже тому, що для цього довелося б зробити нескінченне число досвідів. Це визначення неспроможне математично, тому що ми не можемо вказати функціональної залежності між кількістю випробувань n і частотою появи подій , де m-кількість появ події, а, не вказавши такої залежності, ми не можемо обчислити межу, , що прийнята за ймовірність.

Найбільші представники теорії ймовірностей ніколи не були прихильниками частотної школи, а прихильники цієї школи не одержали істотних результатів у теорії ймовірностей.

Спроб обґрунтувати теорію ймовірностей було досить багато. Наприклад, італійський математик Б. Финетті висунув суб'єктивне тлумачення ймовірності. Таким підходом до ймовірності він намагався перебороти протиріччя, які виникли й у класичній теорії ймовірностей і в частотній школі Мизеса. По Финетті ймовірність є чисто суб'єктивною величиною. Кожна людина по-своєму оцінює ймовірність тієї або іншої події.

Трохи пізніше Джеффрис розробляв поняття ймовірності як ступеня правдоподібності. Уперше ця концепція була висунута Кейнесом в 1921 р. По цій теорії кожна пропозиція має певну ймовірність. Ймовірностям такого роду не можна дати частотної інтерпретації. Розробка теорії ступенів правдоподібності триває деякими математиками й у наші дні.

1.4 Поява аксіоматичного визначення поняття ймовірності

На сьогоднішній день закріпилося визначення поняття ймовірності дане А.Н. Колмогоровим у книзі «Основні поняття теорії ймовірностей» (1933 р.) аксіоматично.

Уже були розкриті глибокі аналогії між поняттями теорії ймовірностей і поняттями метричної теорії функцій. Були встановлені аналогії між множиною й подією, мірою множини й імовірністю події, інтегралом і математичним очікуванням і ін.

Виникла потреба в теорії ймовірностей виходячи з уявлень, що й було виконано в книзі Колмогорова. Після цієї аксиоматизації теорія ймовірностей зайняла рівноправне місце серед інших математичних дисциплін.

Розглянемо аксіоматику Колмогорова.

Нехай є спостереження або випробування, які хоча б теоретично допускають можливість необмеженого повторення. Кожне окреме випробування може мати той або інший результат залежно від випадку. Сукупність всіх цих можливих рішень утворить множина E , що є першим основним поняттям аксіоматики. Це множина E називається множиною елементарних подій. Що із себе представляють події, що є елементами цієї множини, для подальшої логічної побудови зовсім байдуже, як байдуже для аксіоматичної побудови геометрії, що ми будемо розуміти під словами «крапка», «пряма» і т.п. Тільки після такої аксіоматичної побудови теорія ймовірностей допускає різні інтерпретації, у тому числі й не зв'язані з випадковими подіями. Будь-яка підмножина множини E , тобто будь-яку сукупність можливих рішень, називають подією. Або іншими словами: випадковими подіями називаються елементи множини F підмножин з E . Далі розглядаються не всі події, а тільки деяке тіло подій. Теорія ймовірностей займається тільки тими подіями, частота яких стійка. Це положення в аксіоматичній теорії Колмогорова формалізується таким чином, що кожній події, що ми розглядаємо, ставиться у відповідність деяке позитивне число, що називається ймовірністю даної події. При цьому абстрагуються від усього того, що допомагало сформулювати це поняття, наприклад, від частоти. Це дає можливість інтерпретувати ймовірність не тільки імовірнісним способом. Тим самим значно розширюються можливості ймовірностей.

Сформулюємо аксіоми Колмогорова [1,5]. Якщо випадкові події A і B входять до складу F , то події A або B , A і B , не A і не B також утримуються в F . F містить як елементи множина E і всі окремі його елементи.

Кожному елементу A з F поставлено у відповідність ненегативне речовинне число P(A ), називане ймовірністю події A .

P(E )=1.

Якщо A і B не перетинаються й належать F , то P (A +B )=P(A )+P(B ). Для нескінченних множин F є ще одна аксіома, що для кінцевих множин є наслідком п'яти наведених аксіом.

Якщо перетинання послідовності подій порожньо, то .

Аксіоматика Колмогорова сприяла тому, що теорія ймовірностей остаточно зміцнилася як повноправна математична дисципліна.

Простеживши динаміку розвитку й формування поняття ймовірності можна зробити висновок, що воно вироблялося складними шляхами. Математики й філософи, політики й просто захоплені теорією ймовірностей учені намагалися наділити поняття ймовірності в конкретну форму. Даючи правильні й помилкові визначення поняттю ймовірності, вони маленькими кроками просувалися до вірного рішення цього питання. Але навіть у добре й правильно сформульованих варіантах класичного визначення ймовірності можна виявити пробіли й недогляди. Наприклад, майже у всіх даних варіантах класичного визначення відсутнє умова кінцівки числа рівно можливих подій, тобто умова, що . Можливо ця умова не обмовлялася, але малося на увазі. З побудовою системи аксіом для визначення поняття ймовірності задача деякої неспроможності класичного визначення ймовірності була вирішена. Однак спостерігаються спроби дати трактування ймовірності з більше широких позицій, у тому числі й з позицій теорії інформації.

2. Динаміка розвитку поняття математичного очікування

2.1 Передумови введення поняття математичного очікування

Одним з перших наблизився до визначення поняття математичного очікування Д. Кардано у своїй роботі «Книга про гру в кості». Він визначив умови необразливої гри, які можна побачити на наступному прикладі Кардано: кидаються дві гральні кістки. «Якщо, стало бути, хто-небудь заявить, що він бажав би одержати 1, 2 або 3, то ти знаєш, що для цього є 27 шансів, а тому що вся серія складається з 36, то залишається 9 кидань, у яких ці числа окулярів не випадуть; таким чином, ці числа будуть перебувати в потрійному відношенні. Отже, при чотирьох киданнях три випадання будуть сприятливі 1, 2 або 3, і тільки один раз не вийде жодного із трьох зазначених чисел окулярів. Якщо той, хто чекає випадання одного із трьох зазначених чисел окулярів, поставить три асів (давньоримські мідні монети), а другий один, то спочатку перший виграє тричі й одержить три асів, а потім другий виграє один раз і одержить три асів; таким чином, у загальному підсумку чотирьох кидань шанси їх завжди зрівняються. Стало бути, такі умови розрахунку в грі - правильні; якщо ж другий з них поставить більше, те йому доведеться боротися в грі на нерівних умовах і зі збитком для себе; а якщо він поставить менше, те з баришем.» Однак Кардано розуміє, що ці твердження справедливі тільки тоді, коли гра буде тривати досить довго [1].

2.2 Введення поняття математичного очікування і його подальший розвиток

Звернемося до роботи Х. Гюйгенса «Про розрахунок в азартних іграх». Книга складається із введення й 14 пропозицій. Розглянемо перші три пропозиції [1].

Пропозиція 1: «Якщо я маю рівні шанси одержання a або b , те це мені коштує «.

Пропозиція 2: «Якщо я маю рівні шанси на одержання a , b або c , те це мені коштує стільки ж, як якби я мав .

Пропозиція 3: «Якщо число випадків, у яких виходить сума a , дорівнює p і число випадків, у яких виходить сума b , дорівнює q , і всі випадки однаково легко можуть відбутися, то вартість мого очікування дорівнює .

К-во Просмотров: 236
Бесплатно скачать Дипломная работа: Дослідження розвитку теорії ймовірності