Дипломная работа: Электрический расчет и автоматизация электротермической установки
Выполнил: студент факультета
электрификации и автоматизации
736б группы Лузик А.С.
Проверил: Новожилов Ф.А.
Кострома 2009
Аннотация
В курсовой работе выполнены расчеты нагревательных элементов для: электро-калорифера, бытового тепловентилятора, проточного электроводонагревателя приближенным методом по рабочему току. Произведен расчет нихромовой спирали бытового тепловентилятора по удельной мощности и сравнение результатов расчетов с предыдущими. Приведен обзор материалов, используемых при изготовлении нагревателей (электрокалорифера,проточного водонагревателя) и конструктивные особенности ЭТУ. Рассмотрены симметричные и неполнофазные режимы трехфазного электрокалорифера для различных схем их включения. В разделе по автоматизации электрокалорифера принята базовая принципиальная схема установки и рассмотрены варианты ее усовершенствования. Даны основные положения техники безопасности при эксплуатации электрокалорифера.
Пояснительная записка содержит 27 страниц, 8 иллюстраций, 1 график, 5 таблиц. Библиографический список содержит 7 источников. Графический материал содержит один лист формата А1.
Введение
Электричествов настоящее время – основная энергетическая база животноводства, птицеводства, ремонтного производства, стационарных процессов растениеводства. Уровень электровооружённости труда определяет рост производительности труда в этих областях.
В развитии сельской электрификации всё большее внимание уделяется надёжности электроснабжения, рациональному использованию электроэнергии, безаварийной эксплуатации электрооборудования, а также внедрению процессов и установок, в которых электроэнергия применяется не только как энергоноситель, но и как технологический фактор. В последнем случае речь идёт об электротехнологии.
Под электротехнологией понимают область науки и техники, охватывающую изучение и использование технологических процессов, в которых электрическая энергия участвует непосредственно, преобразуясь в рабочей зоне в тепловую, электромагнитную, химическую, механическую и в другие виды энергии.
Сельское хозяйство - крупный потребитель тепловой энергии: в общем энергопотреблении приходится на тепловые процессы. Существует несколько способов преобразования электрической энергии в тепловую, которые различаются по нескольким признакам: по виду «греющего» электрического тока или электромагнитной волны, по способу создания электрического тока или электромагнитной волны и по частоте тока или поля.
По этим признакам в настоящее время различают следующие способы электрического нагрева: сопротивлением, дуговой нагрев, индукционный нагрев, диэлектрический, электролучевой, лазерный, ионный, плазменный, инфракрасный и термоэлектрический нагрев.
Электронагрев в с/х. используется для: подогрева воды для технических нужд, подогрева воздуха в установках микроклимата, обогрева с/х животных и птицы, подогрева почвы и воздуха в парниках и теплицах, сушки зерна, сена, овощей, фруктов, санитарно-гигиенической обработки животных и оборудования и т.д.
Для этих целей используют выпускаемые нашей промышленностью электротермическое оборудование сельскохозяйственного назначения: комбинированные инфракрасные и ультрафиолетовые облучательных установки, инфракрасные облучатели, брудеры, электронагреватели - термосы, проточные электродные и элементные водонагреватели, электродные паровые котлы, электрообогреваемые панели, коврики, электрокалориферные установки и специальный нагревательный провод. Количество и мощность ЭТУ в с/х производстве непрерывно увеличиваются. Большим потенциальным потребителем электронагрева должны стать растениеводство и плодоводство (обогрев парников и теплиц, термообработка продукции).
Таблица 1. Классификация электротермического оборудования по способу нагрева.
Вид электротермического оборудования | Основные области применения | Примеры оборудования |
Электропечи (электротермические устройства сопротивления) | Нагрев воздуха, воды, почвы, сушка и тепловая обработка с/х материалов и кормов, приготовление пищи | Электрокалориферные установки, электропечи, электроводонагреватели, котлы, установки для сушки и активного вентилирования зерна, сена, бытовые электронагревательные приборы, электропечи сопротивления ремонтного производства: нагревательные, плавильные, соляные, щелочные, масляные ванны |
Дуговые электропечи | Электросварка, резка, наплавка металлов | Сварочные трансформаторы сварочные выпрямители, сварочные генераторы |
Индукционные электропечи | Поверхностная закалка металлических деталей, нагрев под термообработку и пластическую деформацию (ковка, штамповка), косвенный нагрев воды (индукционный нагрев воды), обогрев трубопроводов | Индукционные закалочные и нагревательные установки средней и высокой частоты: средняя- 20 кГц, высокая- 66 кГц и выше, индукционные водонагреватели промышленной частоты |
Диэлектрические электропечи | Нагрев диэлектриков и полупроводников, комбинированная высокочастотно- конвективная сушка, стерилизация продуктов, приготовление пищи | Установки диэлектрического нагрева: пресс порошков, резин, дерева, консервной продукции, сушилки семян селикционных центров, СВЧ печи для приготовления пищи |
Электронно- лучевые печи | Термообработка, плавка, сварка тугоплавких (вольфрам tпл= 3600 С) и химически активных металлов в вакууме | Электронные плавилрные, нагревательные и сварочные установки |
Лазерные электропечи | Резка, сварка, поверхностная обработка (закалка) металлов, нанесение покрытий, предпосевная обработка семян, селекционные работы | Установки лазерной технологии в машиностроении и ремонтном производстве, установки предпосевной и селекционной обработки семян |
Ионные электропечи | Химикотермическая обработка металлов | Установки ионно- плазменного азотирования, цементация поверхностного покрытия металлов |
Плазменные электропечи | Плавка, резка, термообработка металлов и сплавов | Дуговые и высокочастотные плазмотроны |
Электропечи инфракрасного нагрева (эл.нагрев ИК- облучения при условии, что спектральные ИК характеристики излучателя соответствуют поглощательным характеристикам установок | Местный обогрев молодняка животных и птицы, сушка материалов и с/х продуктов, приготовление пищи, обработка кормов и семян | Установки ИК обогрева животных и птицы, сушилки фруктов, пастеризаторы молока,термоэлектрические устройства |
Термоэлектрические устройства, нагрев сред теплотой «переносимой» от источника, имеющего температуру более высокую, чем температура потребителя | Обогрев воздуха | Термоэлектрические (полупроводниковые) установки, тепловые насосы, теплохолодильное оборудование |
1. Материалы, применяемые при изготовлении электрокалорифера и проточного электроводонагревателя
1.1 Конструкция нагревателей
Электрический нагреватель — основной элемент электротермической установки, преобразующий электрическую энергию в тепловую. Конструктивное исполнение электрического нагревателя определяется нагреваемой средой, характером нагрева, мощностью, технологическим назначением и другими условиями.
В зависимости от конструкции и технологического назначения электрические нагреватели выполняют с электрической изоляцией, защитными устройствами, а также с устройством для крепления и подвода электрического тока.
По исполнению различают открытые, защищенные и герметические нагреватели.
В нагревателях открытого исполнения резистивное тело — нагревательное сопротивление не изолируют от нагреваемой среды, а размещают непосредственно в ней.
Нагреватели из материала с высоким удельным электрическим сопротивлением изготовляют в виде проволочных или ленточных зигзагов, проволочных спиралей и крепят на керамических стержнях, трубах или изоляторах в воздушном потоке (электрокалориферы) или в воздушном пространстве (электропечи) электротермических установок.
Достоинство открытых нагревателей— простота устройства, ремонтоспособность и возможность обеспечения высокого коэффициента теплоотдачи с поверхности нагревательного элемента. К недостаткам следует отнести сравнительно низкий срок службы, невысокую механическую прочность и невозможность использования в агрессивных средах.
В нагревателях защищенного исполнения нагревательные сопротивления, изготовляемые из материала с высоким удельным электрическим сопротивлением, размещают в защитном корпусе, предохраняющем их от механических повреждений и от нагревательной среды.
Наиболее совершенными и универсальными являютсягерметические трубчатые электронагреватели (ТЭН). Их эффективно используют в электрокалориферах, водонагревателях, электрических печах, теплоаккумулирующих установках, электрокипятильниках, бытовых плитах и др. Промышленность выпускает ТЭН напряжением от 12 до 380 В, мощностью от 100 до 25000 Вт, развернутой длиной от 0.25 до 6.3 м и диаметром трубки от 6 до 16 мм.
ТЭН (рис.1) представляет собой тонкостенную металлическую трубку 6 (оболочку), в которую запрессована спираль из проволоки 4 с большим удельным электрическим сопротивлением. Концы спирали приварены к контактным стержням 3, снабженным с внешней стороны контактными устройствами 1,2 для подключения к сети. Спираль изолируется от стенок трубки наполнителем 5 из периклаза (плавленная окись магния), обладающим высокими диэлектрическими свойствами и теплопроводностью. В качестве наполнителя допускается использовать кварцевый песок, электрокорунд и другие материалы. Торцы трубки герметизируют тепловлагостойким составом и изолирующими втулками 7, что исключает доступ воздуха и влаги внутрь ТЭН.
Рис.1 - 1 и 2 - контактное устройство; 3 - контактный стержень; 4- нагревательная спираль; 5 - накопитель (периклаз); 6 - оболочка (трубка) ТЭН;
Таблица 2. Основные характеристики ТЭНов.
Условное обозначение нагреваемой среды и нагреваемой оболочки ТЭНа | Нагреваемая среда | Характер нагрева | Удельная Мощность, Вт/см2 не более | Материал оболочки и температура на оболочке ТЭНа, °C | Ресурс ТЭНов, ч |
P | Вода, слабые растворы щелочей и кислот |
Нагрев, кипячение | 15 |
--> ЧИТАТЬ ПОЛНОСТЬЮ <-- К-во Просмотров: 408
Бесплатно скачать Дипломная работа: Электрический расчет и автоматизация электротермической установки
|