Дипломная работа: Электронный измеритель амплитуды УЗ-вибраций

Темой данного дипломного проекта является разработка электронного измерителя амплитуды УЗ-вибраций.

В настоящее время для измерения амплитуды ультразвуковых колебаний используют контактные и бесконтактные методы на основе оптических приборов, пьезоэлектрических и индуктивных датчиков. Однако эти приборы не позволяют осуществить непрерывное измерение амплитуды колебаний ультразвуковых инструментов в процессе выполнения технологических процессов и серийно промышленностью не выпускаются. Таким образом, была поставлена задача, сконструировать прибор, который мог бы с высокой точностью измерять амплитуду УЗ-вибраций.

Способ измерения амплитуды механических колебаний рабочего конца ультразвукового инструмента, основан на преобразовании амплитуды механических колебаний в электрическое напряжение.

Для автоматического контроля колебаний, при котором отсутствует перестановка датчика, и изменения измерительного зазора малы, предложено устройство, позволяющее получить стабильную чувствительность.

К устройству подключается выносной вибродатчик, который при контакте с поверхностью работающего УЗ-инструмента, преобразовывает механические колебания последнего в электрический сигнал синусоидальной формы. Датчик вибраций включает металлический волновод, жестко соединенный с ручкой из изоляционного материала. Во внутренней полости ручки на расстоянии, равном j/4 от не рабочего торца волновода (j – средняя длинна УЗ-колебаний в материале волновода для исследуемых частот), жестко, например методом пайки, закреплена упорная пластина, а между ней и демпфером из материала с низкой акустической добротностью расположен пьезоэлектрический преобразователь, изготовленный из пьезокерамики ЦТС-21 в форме кольца диаметром 10-20 мм.

Электрическое напряжение с обкладок пьезоэлемента снимается с помощью латунных контактов и по высокочастотному кабелю передается на измеритель. Рабочий конец датчика оканчивается иглой, изготовленной из высокопрочной инструментальной стали, и припаянной к торцу волновода припоем ПСр45. Снаружи внутренний объем ручки, где размещен пьезоэлектрический преобразователь, защищен прокладкой из термостойкокой резины.

Напряжение с датчика поступает на измеритель вибраций, который состоит из: делителя входного напряжения, усилителя-дискриминатора, детектора средневыпрямленного напряжения, источника образцового напряжения, внутреннего генератора, инвертора зажигания символов запятой, аналогово-цифрового преобразователя, индикатора (см чертеж – А1).

Напряжение электрического синусоидального сигнала с датчика, приведенное входным делителем к интервалу 0-200 мВ поступает на операционный усилитель, который служит для получения линейности детектирования в 1%. Для этого усиление ОУ должно быть не мене 40 дБ. Далее, напряжение, поступившее с датчика, детектируется детектором средневыпрямленных напряжений. На его выходе получаем средневыпрямленное напряжение пропорциональное измеряемому колебанию, который подается на сигнальный вход АЦП. На эталонный вход АЦП с источника образцового напряжения подается опорное напряжение. Преобразователь из аналогового сигнала, полученного с детектора, выделяет цифровой код. Этот код определяется отношением входного напряжения к опорному с учетом фиксированного числа импульсов тактовой частоты АЦП. Тактовая частота преобразователя задается внутренним генератором и должна быть равна 50 кГц. Далее выделенные напряжения с АЦП в виде цифрового кода подаются на ЖКИ.

Корпус состоит из основания и передней панели, на которой расположены табло индикации и включатель питания прибора. Переключатель пределов измерения расположен на левой боковой стенке прибора. На верхней боковой стенке прибора расположен разъем для подключения датчика. Конструкция прибора удобна для пользования и ремонта.

При работе с прибором следует пользоваться технологической инструкцией, а так же соблюдать правила безопасности при работе с ультразвуком.

Экономический эффект от производства прибора составит 117165900 руб. Прибор окупает себя на третьем году производства.

1. АНАЛИЗ МЕТОДОВ И УСТРОЙСТВ ДЛЯ ИЗМЕРЕНИЯ УЗ ВИБРАЦИЙ

При эксплуатации ультразвуковой (УЗ) аппаратуры в целях интенсификации различных технологических процессов необходимо проводить систематический контроль амплитуды колебаний излучателей ультразвука и технологического инструмента, которая оказывает определяющее влияние на качество обработки. Для измерения амплитуды ультразвуковых колебаний используют контактные и бесконтактные методы на основе оптических приборов, пьезоэлектрических и индуктивных датчиков. Однако эти приборы не позволяют осуществить непрерывное измерение амплитуды колебаний ультразвуковых инструментов в процессе выполнения технологических процессов и серийно промышленностью не выпускаются.

Способ измерения амплитуды механических колебаний рабочего конца ультразвукового инструмента, основан на преобразовании амплитуды механических колебаний в электрическое напряжение. Данный способ служит для повышения точности измерений при обработке токопроводящих поверхностей. При этом непосредственно через зону динамического воздействия инструмента с обрабатываемой поверхностью пропускают постоянный электрический ток и измеряют в этой зоне длительность нарушения электрического контакта, по которой определяют значение амплитуды механических колебаний.

Для оперативного контроля режимов работы УЗ колебательных систем широко известны приборы, принцип действия которых основан на использовании индуктивного параметрического способа измерения амплитуд колебательных смещений. При таких измерениях на небольшом расстоянии от колеблющейся поверхности располагается датчик-катушка индуктивности, включенная в колебательный контур электрического генератора. Колебания поверхности вызывают соответствующую частотную модуляцию сигнала генератора. Полученная информация обрабатывается частотным детектором. Основной сложностью является зависимость чувствительности прибора от ширины измерительного зазора, которая может изменятся под воздействием случайных факторов. Существует возможность устранения в некоторых пределах этой зависимости посредством соответствующего изменения коэффициента передачи измерительного тракта виброметра в соответствии с изменением средней величины измерительного зазора.

Для автоматического контроля колебаний, при котором отсутствует перестановка датчика, и изменения измерительного зазора малы, предложено устройство, позволяющее получить стабильную чувствительность в некотором интервале изменения зазора.

Устройство состоит: датчик; делитель входного напряжения; усилитель-дискриминатор; детектор средневыпрямленного напряжения; генератор образцового напряжения; внутренний генератор; инвертор зажигания символов запятой; аналогово-цифровой преобразователь; индикатор.

При колебаниях поверхности напряжения на выходе автогенератора изменяется по закону:

(1.1)

где - средняя частота генератора; f - частота колебаний поверхности; @W - амплитуда девиации частоты автогенератора; t - время.

Сигнал на выходе автогенератора несет таким образом информацию о мгновенном расстоянии между датчиком и колеблющейся поверхностью, включая сюда и его среднее значение. На выходе частотного детектора можно получить два сигнала - постоянное или медленно изменяющееся напряжение, зависящее от среднего расстояния между датчиком смещения и колеблющейся поверхностью, а также переменное напряжение УЗ-частоты, амплитуда которого пропорциональна амплитуде смещения :

(1.2),

где - чувствительность.

Экспериментальное исследование зависимости чувствительности S от расстояния r выявило ее нелинейный характер. Обработка экспериментальных данных позволила установить, что в пределах 1-3 мм изменения r ход чувствительности S с расстоянием, может быть аппроксимирован экспоненциальной зависимостью:

(1.3),

где d и B-постоянные.

Изменение же сигнала на выходе частотного детектора описывается функцией:

(1.4),

где Ео - некоторая постоянная величина, которую можно трактовать в качестве сдвига уровня напряжения.

К-во Просмотров: 297
Бесплатно скачать Дипломная работа: Электронный измеритель амплитуды УЗ-вибраций