Дипломная работа: Электронный измеритель амплитуды УЗ-вибраций

, (1.5)

На основе этих предпосылок основано электронное устройство, схему которого был введен каскад, позволяющий получить частное от деления сигнала, соответствующего амплитуде УЗ колебаний, на сигнал, соответствующий среднему значению ширины зазора, т.е. осуществляет приборную реализацию предложенного алгоритма.

Таким образом, предложено и реализовано в виде лабораторного макета новое устройство для бесконтактного параметрического измерения амплитуды УЗ колебаний, чувствительность которого при изменении ширины измерительного зазора на > 0,5 мм остается неизменной. Сравнительно малый диапазон измерительных зазоров, для которых применима экспоненциальная аппроксимация зависимости чувствительности, не благоприятствует использованию построенных на этом принципе приборов для абсолютного измерения.

Для создания автоматических систем питания инструмента с помощью акустической обратной связи перспективны новые пьезоактивные материалы - пьезополимеры в виде пленки толщиной 10-20 мкм из поливинилденфторида с примесью фторопласта Ф2МЭ. Пленка изготавливалась методом экструзии с последующей вытяжкой, металлизировалась с обеих сторон алюминием и поляризовалась электрическим полем 600 кВ/см при температуре 70°С .

Датчики представляли собой образцы пленки размером 1х1 см, наклеенные в пучность деформации. Ось ориентации пленки совпадала с направлением колебаний вдоль оси стержня. Напряжение на электродах пленки пропорционально средней по ее длине деформации:


, (1.6)

где Х2 и Х1 -координаты начала и конца пленки по оси, U(Х2 )и U(Х1 )-колебательные смещения в этих точках, q -чувствительность образца пленки к деформации.

Величина q вычисляется из уравнений пьезоэффекта

, (1.7)

где D31-пьезомодуль материала, C11-модуль упругости, E -диэлектрическая проницаемость, E0 =8,85×10-12 Ф/м, t -толщина пленки.

Экспериментально измеренные данные:

d = (12-18)×10-12 Кл/н, на частоте 1 кГц =9,8-10;

модуль упругости (2,0-2,2)×109 Н/м.

Чувствительность датчиков по амплитуде на частоте 40-60 кГц была в пределах 100-300 мВ/мкм в зависимости от коэффициента усиления.

Оптический метод измерения амплитуды с помощью микроскопа широко распространен и применяется часто за эталонный, однако он дает большую погрешность при измерении малых амплитуд и неудобен в эксплуатации. Метод, основанный на интерференции лазерного излучения, абсолютный и очень точный, имеет ограничение по динамическому диапазону и является достаточно сложным и громоздким.

Оптические датчики основаны на модуляции колеблющимся объектом светового потока: отраженного от объекта или работающего «на просвет».

Существенным элементом датчика, работающего на «отражение», является световод, представляющий собой два пучка оптических волокон, собранных на одном конце в жгут, торец которого и является чувствительным элементом. На противоположном конце один из пучков совмещается источником света , а другой - подводится к фотоприемнику , преобразующий световой сигнал в электрический.

В приемник луча попадает световой поток, отраженный от поверхности. Зависимость освещенности Е приемного пучка и, следовательно, величина светового тока через фотоприемник от расстояния между чувствительным элементом и поверхностью имеет ярко выраженный максимум.

Диапазон измерительных величин А, мкм 0,1-500

Диапазон частот, кГц 0,05-100

Относительная погрешность, % 5

Диапазон компенсирующих коэффициентов 0,21

Погрешность, вызванная наклоном световода относительно поверхности 0,5

Калибровка датчика «на отражение» проводилась с помощью регенеративной лазерной интерфериционной установки.

Разработан ультразвуковой виброметр для измерения амплитуды механических колебаний объекта, например ультразвуковых преобразователей.

Сигнал с автогенератора, в состав которого входят параметрический датчик смещений и конденсатор, подается на усилитель - дискриминатор, а затем - на частотный детектор. Коммутатор периодически шунтирует конденсатор, что вызывает модуляцию сигнала на выходе частотного детектора. На выходе первого амплитудного

детектора сигнал пропорционален измеряемому колебанию, а на выходе второго амплитудного детектора - величине эквивалентного изменения зазора, определяемой емкостью конденсатора.

Недостатком рассмотренных конструкций виброметров является их сложность и ограниченная область применения.

Для контроля работы ультразвуковых преобразователей с волноводами и концентраторами целесообразнее применять ёмкостные или индуктивные датчики. Принцип одного из методов, на котором основано применение этих датчиков, заключается в ёмкости или индуктивности цепи высокочастотного генератора с частотной модуляцией амплитуды смещения концентратора. Глубина частотной модуляции пропорциональна амплитуде смещения. Другой принцип работы индуктивного датчика состоит в изменении потока в его магнитной цепи, которое происходит при колебаниях волновода. Индуцированное в обмотке датчика напряжение пропорционально смещению преобразователя. Датчики выполнены таким образом, что с их помощью можно измерять колебания на металлических деталях. Датчики устанавливают на расстоянии 0-2 мм от поверхности, что гарантирует получение оптимальных результатов. Электрический выход датчика подсоединяют к юстированному усилителю с прямым считыванием измеряемой величины. В датчиках этого типа сигнал (0,5-100 мВ) пропорционален амплитуде скорости смещения или знакопеременному напряжению в диапазоне частот 16-100 кГц. Индуктивные датчики представляют собой компактный блок, защищённый от истирания и повреждений полиэфирным покрытием, с кабелем, имеющим соответствующий вывод для соединения с измерительным прибором.

К-во Просмотров: 298
Бесплатно скачать Дипломная работа: Электронный измеритель амплитуды УЗ-вибраций