Дипломная работа: Электроснабжение нефтеперерабатывающего завода
Пары верха колонны ( углеводородный газ, нестабильный бензин, водяной пар) поступают в конденсаторы-холодильники, водяные доохладители и далее в рефлюксную емкость , где происходит разделение на нестабильный бензин, жирный газ и воду.
Газоразделение предназначено для очистки жирного газа от H2 S и CO2 15 % раствором моноэтаноламина, фракционирующей абсорбции жирного газа, повторной абсорбции сухого газа, доочистки сухого газа 15 % раствором моноэтаноламина, стабилизации бензина, разделения “головки” стабилизации на пропан-пропиленовую и бутан-бутиленовую фракции.
Из газосепаратора жирный газ направляется на сероочистку в абсорбер.
Жирный газ поступает под 24 тарелку, а регенерированный раствор МЭА подается на пятую тарелку колонны. В результате абсорбции из жирного газа извлекается сероводород и углекислота. Для отмывки жирного газа от унесенного моноэтаноламина на первую тарелку подается химобессоленная вода.
Жирный сероочищенный газ из колонны направляется на компрессию через сепаратор, установленный на приеме газового компрессора ГК-301 для защиты компрессора от попадания жидкой фазы.
Жирный газ с нагнетания компресса ГК-301 с давлением ~1,1 МПа поступает в воздушные холодильники на охлаждение и частичную конденсацию.
Регулирование температуры после каждого холодильника осуществляется регуляторами, которые регулируют частоту вращения лопастей воздушных холодильников.
После охлаждения жирный газ поступает в сепаратор на сепарацию.
Унесенные из К-301 пары воды, сконденсировавшиеся , отстаиваются в отстойнике сепаратора и выводятся по уровню раздела фаз из отстойника под собственным давлением в емкость загрязнённого технологического конденсата.
Газ из сепаратора с давлением приблезительно 1,0 мПа подается во фракционирующий абсорбер под 12 тарелку.
Нестабильный бензин от насоса поступает в межтрубное пространство теплообменника и подается на 16 тарелку стабилизатора, где происходит стабилизация бензина за счет выделения из нестабильного бензина фракций. Подогрев поступающего нестабильного бензина в теплообменнике осуществляется стабильным бензином, отходящим под избыточным давлением из кубовой части стабилизатора на всас насоса.
Тепло в колонну подается через термосифонные рибойлеры подачей в них в качестве теплоносителя IV ЦО колонны после теплообменника.
С куба стабилизатора стабильный бензин выводится на блок гидроочистки. Вывод стабильного бензина из куба колонны осуществляется по уровню, значение которого является корректирующим для регулятора расхода стабильного бензина от насоса на блок гидроочистки.
Для очистки бензина от серы предусмотрен блок гидроочистки бензина каталитического крекинга. В качестве катализатора используется высокоактивный алюмо–кобальт–молибденовый катализатор.
Процесс гидроочистки ведется в токе водорода высокой чистоты и парциального давления. Высокое парциальное давление водорода в реакторе увеличивает скорость реакции гидрообессеривания и уменьшает скорость дезактивации катализатора.
Бензин каталитического крекинга характеризуется значительным содержанием сернистых соединений – сульфидов и тиофенов и непредельных углеводородов – олефинов и диенов. Наблюдается также качественное присутствие меркаптанов. Основная часть непредельных углеводородов концентрируется в легких фракциях крекинга-бензина, выкипающих при температурах до 120 о С, в то время как содержание сернистых соединений резко возрастает с утяжелением фракционного состава.
Сущность процесса стабилизации бензина заключается в разделении углеводородных газов ректификацией на фракции в результате многократного двухстороннего массообмена при кипении и конденсации между противоточно движущимися парами и жидкостью. При ректификации происходит диффузия высококипящего компонента из пара в жидкость и низкокипящего из жидкости в пар в результате неравновесной разности концентраций между контактирующими потоками.
Очистка циркулирующего водородсодержащего газа (ЦВСГ), производимая раствором моноэтаноламина (МЭА), основана на процессе химического поглощения сероводорода (абсорбция с протеканием химических реакций).
Образовавшиеся соединения при нормальных условиях имеют заметное давление насыщенных паров. При повышении температуры давление насыщенных паров этих соединений быстро растет. С учетом того, что реакция поглощения сероводорода раствором МЭА экзотермическая (на 1 кг поглощенного сероводорода выделяется приблизительно 300 ккал тепла), повышение температуры насыщенного раствора МЭА сдвинет равновесие в сторону обратных реакций, что позволяет десорбировать сероводород из раствора МЭА.
Сырье – стабильный бензин каталитического крекинга, поступает на гидроочистку в межтрубное пространство теплообменника, предварительно смешиваясь с водородсодержащим газом (ВСГ), поступающим от циркуляционного компрессора
Смесь сырья и ВСГ проходит последовательно межтрубное пространство теплообменников, где за счет тепла смеси продуктов реакции гидроочистки и ВСГ нагревается до температуры 200-300о С.
После, газосырьевая смесь двумя потоками поступает в печь, где нагревается до температуры 250-350о С за счет сжигания топливного газа в горелках печи.
Из печи, нагретая до температуры 250-350о С, газосырьевая смесь направляется последовательно в реакторы гидроочистки, где на алюмокобальмолебденовом катализаторе протекает реакция гидрогинолиза серосодержащих соединений и гидрирование непредельных углеводородов, содержащихся в сырьевом потоке.
В реакторе идут реакции глубокого гидрообессеривания сульфидной и тиофеновой серы, насыщения углеводородов, превращения сернистых соединений и насыщения ароматических углеводородов. Реакции гидрообессеривания экзотермические (проходят с выделением тепла), что может привести к неуправляемому повышению температуры в реакторе. Далее газопродуктовая смесь с температурой 120-260о С и давлением 2,6 МПа поступает на охлаждение в аппараты воздушного охлаждения и далее в водяной холодильник .
Газопродуктовая смесь после холодильника с температурой 40-50 о С поступает в сепаратор высокого давления. В сепараторе происходит разделение газопродуктовой смеси на жидкие углеводороды, ВСГ и отстой кислой воды.
Кислая вода из отстойника выводится в емкость.
Водородсодержащий газ (ВСГ), отделенный от нестабильного гидрогенизата, поступает под нижнюю (20-ю) тарелку абсорбера К‑502, где происходит поглощение раствором МЭА сероводорода, содержащегося в ВСГ.
ВСГ проходит через абсорбер снизу вверх противотоком подаваемому 15 %-ному водному раствору моноэтаноламина (МЭА).
Регенерированный раствор МЭА насосом подается в емкость. Из емкости раствор МЭА с расходом 2,8 м3 /ч подается насосом на верхнюю (1-ю) тарелку . Очищенный от сероводорода ВСГ с верха абсорбера поступает в сепаратор , где происходит сепарация из ВСГ унесенных капель МЭА, который выводится в емкость .