Дипломная работа: Формирование мотивации учебной деятельности при изучении математических предложений

Различные формы коллективной деятельности учащихся играют значительную роль в становлении мотивации учения, что объясняется несколькими обстоятельствами.

Большое значение имеет включение всех учащихся в активную учебную работу, ибо только в процессе деятельности может формироваться нужная мотивация. Использование групповых форм обучения втягивает даже «глухих» учащихся, так как, попав в группу одноклассников, которые коллективно выполняют определенное задание, ученик не может отказаться выполнять свою часть работы, иначе подвергнется моральной критике своих товарищей, а их мнением, уважением он, как правило, дорожит, зачастую даже больше, чем мнением учителя. Кроме того, работая в микроколлективе, каждый ее член старается быть не хуже других, возникает здоровое соревнование, которое способствует интенсификации учебной работы, придает ей эмоциональную привлекательность, что также играет роль в становлении соответствующей мотивации.

Когда ученик, работая коллективно в группе учащихся, находясь в тесном общении с ними, наблюдает, какой большой интерес вызывает его деятельность у товарищей, какую ценность представляет для них эта работа, то он сам начинает ее ценить, начинает понимать, что учебная работа может представлять значимость сама по себе. А это способствует включению ученика в активную учебную работу, которая постепенно становиться его потребностью и приобретает для него признаваемую им ценность, что приводит к мотивации учения.

Для формирования устойчивой положительной мотивации учебной деятельности очень важно, чтобы каждый ученик почувствовал себя субъектом учебно-воспитательного процесса. Этому может способствовать личностно-ролевая форма организации учебного процесса. При данной форме организации каждый ученик выполняет определенную роль в процессе обучения. Это способствует становлению мотивации этой деятельности, которая приобретает для школьников признаваемую ценность.

Таким образом, различные формы коллективной деятельности дают возможность дифференцировать эту деятельность для разных категорий учащихся, дифференцировать задания так, чтобы сделать их посильными для каждого ученика. Это также важно для становления мотивации учения.

4 . Значение оценки в становлении мотивации учебной деятельности.

Для формирования положительной устойчивой мотивации учебной деятельности важно, чтобы главным образом в оценке работы ученика был качественный анализ этой работы, подчеркивание всех положительных моментов, продвижений в освоении учебного материала и выявление причин имеющихся недостатков, а не только их констатация. Этот качественный анализ должен направляться на формирование у учащихся адекватной самооценки работы, ее рефлексии. Балльная оценка должна занимать в оценочной деятельности учителя второстепенное место. Особенно осторожно надо использовать в текущем учете неудовлетворительные отметки, а на первых порах обучения, по-видимому, лучше вовсе их не использовать. Вместо этого надо просто указывать на имеющиеся пробелы в работе. Такой анализ надо где-то фиксировать. При тематической форме учета и оценке работы учащихся это легко сделать.[14]

Итак, мы рассмотрели разные пути формирования положительной устойчивой мотивации учебной деятельности учащихся. Для становления такой мотивации следует использовать не один путь, а все пути в определенной системе, в комплексе, ибо не один из них, сам по себе, без других, не может играть решающей роли в становлении мотивации всех учащихся.


3. Реализация этапа мотивации учебной деятельности.

3.1 Мотивация изучения математических понятий.

Начальным этапом формирования понятий является мотивация. Сущность этого этапа заключается в подчеркивании важности изучения понятия, в побуждении школьников к целенаправленной и активной деятельности, в возбуждении интереса к изучению понятия. Мотивация может осуществляться как по средствам привлечения средств нематематического содержания (внешняя мотивация), так и в ходе выполнения специальных упражнений, объясняющих необходимость развития математических теорий (внутренняя мотивация). Например, появление обыкновенных дробей, как правило, мотивируется потребностями практики. Введение смежных углов можно мотивировать необходимостью изучения не только отдельных фигур, но и их объединений. Рассмотрение взаимного расположения прямой и окружности приводит к трем случаям, один из которых характерен тем, что окружность и прямая имеют одну общую точку. Указанный случай и обуславливает введение понятия касательной к окружности.[19]

Примеры:

1 . Арифметическая (геометрическая) прогрессия может быть введена путем выполнения упражнений на запись числовых последовательностей, заданных определенными свойствами, либо на выявление свойств, которыми обладают указанные последовательности.

Например, при введении понятия арифметическая прогрессия можно предложить следующее задание:

Дана последовательность чисел: 4, 7, 10, 13, 16, ….

Ответьте на следующие вопросы:

· Какая закономерность прослеживается между числами? (последующее число отличается от предыдущего на 3);

· Попробуйте выразить 3-ий член, 4-ый член, n-ый член через первый;

Таким образом, обозначив первый член последовательности через а1 , второй – а2 , и так далее, а n-ый через аn , мы можем сделать соответствующие выводы: аn =an -1 + 3; разность между элементами равна 3, обозначим это число через d, тогда аn =an -1 + d, аn =a1 + (n– 1)d. Рассмотренная числовая последовательность называется арифметической.

Определение: числовую последовательность, каждый член которой, начиная со второго, равен сумме предшествующего члена и одного и того же числа d, называют арифметической прогрессией, а число d – разностью арифметической прогрессии.[17]

2 . Озна?

К-во Просмотров: 211
Бесплатно скачать Дипломная работа: Формирование мотивации учебной деятельности при изучении математических предложений