Дипломная работа: Гальмування залізоініційованого окиснення фосфоліпідів
I. Інгібітори, що обривають ланцюг за реакцією з пероксидними радикалами. Такими інгібіторами є ароматичні сполуки з порівняно слабкими О-Н і N–H зв'язками (феноли, нафтоли, ароматичні аміни, діаміни).
II. Інгібітори, що обривають ланцюг за реакцією з алкільними радикалами. До них відносяться сполуки: хінони, імінохінони, метиленхінони, стабільні нітроксильні радикали, молекулярний иод.
III. Інгібітори, що швидко реагують з гідропероксидами без утворення вільних радикалів: сульфіди, фосфіти, арсеніти і т.д., а також тіосульфати і карбамати металів, різноманітні комплекси металів.
IV. Інгібітори-дезактиватори металів. Каталізоване окиснення сполуками металів перемінної валентності вдається сповільнити, вводячи комплексоутворювач, що утворює з металом неактивний комплекс стосовно гідропероксиду. До таких інгібіторів відносяться діаміни, гідроксікислоти й інші біфункціональні сполуки.
V. Інгібітори комбінованої дії. Часто в молекулі інгібітору присутні дві або кілька різних функціональних груп (-ОН, –NH2 , =S, –SH та ін.), кожна з яких вступає паралельно у відповідну реакцію.
VI. Синергісти – це речовини, що підсилюють дію інгібіторів. Синергісти вводять з будь-яким типовим інгібітором у суміші. Для фенолів синергістами є органічні кислоти (лимонна, аскорбінова, щавелева).
Серед інгібіторів рідиннофазного окиснення органічних сполук центральне місце займають феноли. Саме гідроксильна група, яка приєднана до ароматичного кільця молекули, забезпечує здатність фенолів гальмувати окиснення за рахунок взаємодії їх з пероксидними радикалами субстрату, що окислюється:
Аргументами на користь цієї елементарної реакції є реєстрація методом ЕПР радикалів, що утворюються з інгібітору, наявність ізотопного ефекту з дейтерованими фенолами, відсутність інгібуючої активності простих і складних ефірів фенолів [29].
Активність фенолу в реакції з пероксидним радикалом залежить від двох факторів: міцності О-Н зв'язку (DO–H ) і наявності об'ємних замісників в орто-положенні, що створюють в елементарному акті стеричні перешкоди. З одного боку, збільшення об'єму о– алкільних замісників знижує міцність ОН- зв'язку, оскільки ці замісники викликають порушення компланарності гідроксильної групи з площиною ароматичного кільця. Це повинно призводити до росту активності фенолів у реакціях радикального заміщення за участю атома водню гідроксильної групи. З іншої сторони виникають стеричні перешкоди для таких реакцій. Така подвійність приводить до того, що найбільше в реакціях радикального заміщення є феноли з проміжним о– алкільним заміщенням.
Необхідно відзначити, що електроннодонорні замісники збільшують антиоксидантну активність фенолів, а електронноакцепторні – її знижують.
В молекулі PhOH вразливий О-Н зв'язок, що легко атакується пероксидним радикалом. Висока реакційна здатність фенолів пояснюється в основному невисокими значеннями міцності О-Н зв'язків.
Феноли інтенсивно обривають ланцюг за реакцією з у концентраціях, що на 4–5 порядків менше, ніж концентрація вуглеводню, що окисляється. Цьому відповідає різниця в k2 і k7 на кілька порядків. Таке велике розходження не зв'язане лише з міцністю зв'язків С-Н у вуглеводнях і О-Н у фенолах, а викликано різними активаційними бар'єрами цих реакцій. Як показано в роботі [28], велике розходження в енергіях активацій реакцій 2 і 7 викликано триплетним відштовхуванням і внеском незв’язуючої орбіталі Y…...OOR у створенні активаційного бар'єра в реакції типу Чим міцніше зв'язок Y–OOR , тим більше енергія незв’язуючої орбіталі і вище її внесок триплетного відштовхування, що складає 27,6 кдж/моль, а у випадку фенолів він близький до нуля, тому що зв'язок RO–OAr дуже слабкий. Саме тому феноли володіють високою реакційною здатністю стосовно пероксидних і алкоксильних радикалів.
Крім того, реакції з фенолом, мабуть, передує утворення водневого зв'язку:
Вимірювана на досвіді константа швидкості цієї реакції k7 дорівнює добуткові К ·k.
Час життя комплексу трохи більший, ніж час існування клітинної пари , що, видимо, позначається на константі швидкості реакції 2. Коли в розчині присутні полярні молекули, що утворюють водневий зв'язок з фенолом, це, природно, сповільнює реакцію і знижує ефективну константу швидкості реакції k7 .
Аналіз значень k7 показує, що величина цієї константи слабко залежить від природи пероксирадикалів і визначається, в основному, структурою інгібітору [13,15,30]. Характер замісників, їхнє положення в ароматичному кільці інгібітору з однієї сторони впливають на міцність О-Н зв'язку в молекулах інгібітору, а з іншої на активність радикалів, що утворюються з нього .
Феноксильні радикали багатьох фенолів порівняно стійкі через делокалізацію вільного гетероатома з π- електронами ароматичного кільця, що дає можливість вивчати їхні властивості і визначати будову продуктів. При великих концентраціях радикалів в системі з продуктами перетворення є, головним чином, сполука R OOIn (реакція 8).
В умовах інгібованого окиснення з реакцією 8 конкурує реакція бімолекулярної загибелі (реакція 9). В залежності від співвідношення []/[] і структури феноксила може переважати той або інший шлях. Можлива димеризація феноксильних радикалів за положеннями 2, 4, 6 ароматичного кільця, яка є зворотньою і не призводить до утворення стабільних продуктів. Основний шлях їх зворотньої бімолекулярної загибелі при наявності в феноксилі слабко зв'язаних атомів водню – диспропорціонування з утворенням метиленхінона і регенерацією вихідного фенолу [30].
Механізм дії інгібіторів досить складний і включає крім реакції обриву ланцюга ряд інших елементарних реакцій за участю молекул і радикалів інгібітору.
Оскільки феноли – відновники, а обрив ланцюга на інгібіторі – реакція окиснення, той будь-який інший окисник, що знаходиться в системі, буде реагувати з молекулою інгібітору. Такими окисниками в системі завжди є гідропероксид і молекулярний кисень. Якщо в результаті реакції інгібітору з цими речовинами утворюються тільки молекулярні продукти, то відбувається додаткова витрата інгібітору, що знижує його активність. Якщо ж у результаті реакції утворюються вільні радикали, то реакція служить додатковим джерелом ініціювання.
Активність різних фенольних сполук як вільнорадикальних АО досліджувалася на великій кількості систем, включаючи ліпіди в білку, емульговані ліпіди й інші складні харчові матеріали. В жировмісних системах, таких як емульсії, АО можуть розподілятися між гідрофобною ліпідною фазою, гідрофільною водною фазою і міжфазним середовищем. Ці системи відносять до гетерофазних, тому що ліпіди утворюють різні дискретні середовища, в залежності від їхніх фізичних властивостей, через несумісність з водними системами.
Ліпофільний характер АО, обумовлений його розподілом між фазами, розрізняється в полярності. Одною важливою рушійною силою для розподілу є енергія віддалення утримуваної водної оболонки, що утворюється навколо АО у водній фазі.
Сили взаємодії між молекулами, що є результатом притягання між різними функціональними групами, можуть призвести до різного характеру розподілу. З одного боку, загальний склад дискретних фаз може викликати розходження в полярностях, що так само впливає на характер розподілу АО [31].
Розходження в ефективності антиоксидантів у дискретних ліпідних системах можна віднести до різної розчинності АО в різних фазах колоїдних харчових систем [32,33].
Активність зростає при наявності притягання заряджених частинок і знижується при відштовхуванні ліпідної поверхні і гідрофільних АО [7,34].
На підставі розходжень антиоксидантної активності було припущено, що міжфазний розподіл антиоксидантів – важлива фізико-хімічна властивість, що може значно впливати на їхню активність, і значний вплив робить константа розподілу сполук на доступ до радикалів у ліпофільній фазі, а не прямий розгляд швидкостей захвату радикалів [34].
В деяких дослідженнях показано [32], що відносна активність АО може змінюватися, якщо порівнювати системи з розходженнями в розподілі ліпідної фази. Повідомили, що гідрофільні антиоксиданти менш ефективні в м/в (полярних) емульсіях і мембранних системах, чим гідрофобні. Антиоксидантний потенціал сполук різний при різних способах окиснення або, для того самого досліду, при різній полярності середовища, оскільки взаємодія АО з іншими сполуками відіграє важливу роль в активності. Спостерігали протилежні результати, коли та сама модельна сполука є сильним АО в одному методі і прооксидантом в іншому. Це явище, назване “полярним парадоксом”, описано в роботі [32], гідрофільні АО більш ефективні в масі олії, тоді як ліпофільні мають велику активність в емульсіях.