Дипломная работа: Газохроматографическое исследование углеводородов С1-С6 сероводорода и меркаптанов в нефтяных продуктах
Методы атомно-абсорбционного анализа применяют также для измерения некоторых физических и физико-химических величин – коэффициент диффузии атомов в газах, температур газовой среды, теплот испарения элементов и других; для изучения спектров молекул, исследования процессов, связанных с испарением и диссоциацией соединений.
Определение примесей металлов и фосфора в нефтепродуктах осуществляется на методом пламенной атомной абсорбции или на оптических эмиссионных спектрометрах индуктивно-связанной плазмы. Основной проблемой при работе с пробами такого типа является необходимость их подготовки. Обычно это делается путем озоления матрицы и растворение полученного остатка в водно-кислотной смеси. [18]
Инфракрасная спектроскопия
Инфракрасная спектроскопия (ИК спектроскопия), раздел молекулярной оптической спектроскопии, изучающий спектры поглощения и отражения электромагнитного излучения в ИК области, то есть в диапазоне длин волн от 10–6 до 10–3 м. В координатах интенсивность поглощенного излучения – длина волны (или волновое число) ИК спектр представляет собой сложную кривую с большим числом максимумов и минимумов. Полосы поглощения появляются в результате переходов между колебательными уровнями основного электронного состояния изучаемой системы. Спектральные характеристики (положения максимумов полос, их полуширина, интенсивность) индивидуальной молекулы зависят от масс составляющих ее атомов, геометрического строения, особенностей межатомных сил, распределения заряда и др. Поэтому ИК спектры отличаются большой индивидуальностью, что и определяет их ценность при идентификации и изучении строения соединений. Для регистрации спектров используют классические спектрофотометры и фурье-спектрометры. [19]
Инфракрасные спектры поглощения, отражения или рассеяния несут чрезвычайно богатую информацию о составе и свойствах пробы. Сопоставляя ИК спектр образца со спектрами известных веществ, можно идентифицировать неизвестное вещество, определить основной состав пищевых продуктов, полимеров, обнаружить примеси в атмосферном воздухе и газах, провести фракционный или структурно-групповой анализ. Методом корреляционного анализа по ИК спектру пробы также можно определить его физико-химические или биологические характеристики, например всхожесть семян, калорийность пищевых продуктов, размер гранул, плотность и т.д. [20]
В современных приборах ИК спектр определяется сканированием по сдвигу фаз между двумя частями разделенного светового пучка (Фурье спектрометрия). Этот метод дает значительный выигрыш в фотометрической точности и точности отсчета длины волны. [21]
Фурье спектрометры значительно выигрывают в фотометрической точности у дифракционных приборов. В дифракционных приборах на приемник попадает свет только в узком спектральном интервале, который попадает на выходную щель монохроматора. В Фурье спектрометрах на фотоприемник всегда поступает весь свет источника, и все спектральные линии регистрируются одновременно. Следовательно, возрастает соотношение сигнал/шум.
Метод ИК-спектроскопии основан на экстракции нефтепродуктов из пробы четыреххлористым углеродом или хладоном 113, очистке экстракта от полярных соединений методом колоночной хроматографии на оксиде алюминия и последующей регистрации поглощения излучения в области спектра 2700–3200 см-1, обусловленного валентными колебаниями СН3 и СН2 групп алифатических и алициклических соединений и боковых цепей ароматических углеводородов, а также связей СН ароматических соединений.
Метод может быть реализован как в варианте регистрации спектра поглощения в указанной области с помощью традиционного или Фурье-спектрометра, так и более простом варианте, при котором используется анализатор, измеряющий интегральное поглощение излучения в области 2900–3000 см-1, в которой наблюдаются наиболее интенсивные полосы поглощения, соответствующие асимметричным валентным колебаниям групп СН3 и СН2.
Метод требует обязательной градуировки средства измерений с использованием стандартных образцов состава раствора нефтепродуктов в четыреххлористом углероде. В России используются стандартные образцы, приготовленные на основе так называемой трехкомпонентной смеси (37,5% гексадекана, 37,5% 2,2,4 – триметилпентана и 25% бензола по массе). Нижняя граница диапазона измерения – 0,05 мг/дм3. Основное достоинство метода – слабая зависимость аналитического сигнала от типа нефтепродукта, составляющего основу загрязнения пробы. [22]
Трудности, возникающие при использовании метода, связаны с мешающими влияниями липидов и других полярных соединений при их высоком содержании, при котором оказывается исчерпанной емкость хроматографической колонки, используемой для очистки экстракта. Основной недостаток метода – его неэкологичность, обусловленная применяемыми высокотоксичными растворителями [23]
Качественные показатели нефти Самарских месторождений, их соответствие товарной нефти
Институтом нефти СО РАН сделан сравнительный анализ качества российской нефти, дана оценка основных нефтегазовых месторождений, в том числе Волго-Уральской. Стратегия развития России в области энергетики предусматривает увеличение объемов переработки нефти до 220–225 млн т в год. Значительную часть полученных нефтепродуктов планируется экспортировать, в том числе и в Западную Европу. Однако постоянное ужесточение экологических и качественных требований Европейского Союза к потребляемым нефтепродуктам может привести к сокращению экспортных возможностей нефтеперерабатывающей отрасли России. В силу этого задача обеспечения мирового уровня качества выпускаемой продукции становится для отечественных НПЗ все более актуальной. Сложность ее решения в значительной степени определяется качеством поступающего на переработку сырья. Следовательно, определение качества нефти, добываемой из различных месторождений, приобретает важное значение как для производителей, так и для потребителей нефти [1].
Для сырой нефти основными качественными характеристиками являются плотность, содержание серы и фракционный состав. В ТУ 39–1623–93 «Нефть российская, поставляемая для экспорта» по перечисленным физико-химическим свойствам нефть разделена на четыре типа [2] (см. табл. 1) .
Таблица 1. Классификация нефти, поставляемой для экспорта
Наименование показателя | Норма для типа | |||
1 | 2 | 3 | 4 | |
1. Плотность при 20 °С, кг/м3 , не более | ≤ 850 | ≤ 870 | ≤ 890 | ≤ 895 |
2. Выход фракций, % объемных, не менее | ||||
при температуре до 200 °С | ≥ 25 | ≥ 21 | ≥ 21 | ≥ 19 |
при температуре до 300 °С | ≥ 45 | ≥ 43 | ≥ 41 | ≥ 35 |
при температуре до 350 °С | ≥ 55 | ≥ 53 | ≥ 50 | ≥ 48 |
3. Массовая доля серы, %, не более | ≤ 0,6 | ≤ 1,8 | ≤ 2,5 | ≤ 3,5 |
Определение качества нефти
За рубежом при определении качественных показателей нефти применяются плотностная и дистилляционная модели качества.
В плотностной модели качество нефти и, соответственно, ее стоимостные показатели связываются с плотностью и содержанием серы. Дистилляционная модель качество нефти и ее стоимость связывает с потенциалом светлых фракций нефти. Попытка привести качество отечественной нефти к мировым стандартам привела к тому, что в 1989 г. в нашей стране впервые в дополнениях к ГОСТ 9965 «Нефть для нефтеперерабатывающих предприятий. Технические условия» основными показателями, характеризующими потребительские свойства нефти, были предложены плотность и массовое содержание серы. Позже в [2] в качестве наиболее значительно влияющих на потребительские свойства нефти указаны следующие физико-химические свойства нефти:
· плотность нефти p;
· выход фракций при температурах до 200, 300 и 350 градусов;
· массовая доля серы S;
· концентрация хлористых солей С.
Плотность нефти в значительной степени зависит от количества содержащихся в ней асфальтосмолистых веществ, способствующих образованию стойких водонефтяных эмульсий, увеличивающих стоимость ее переработки. Выявляются и другие негативные последствия при переработке тяжелых смолистых нефтей. В частности, увеличение затрат при транспортировке и переработке такой нефти. Повышенное содержание серы в нефти приводит к интенсивной коррозии аппаратуры, необходимости защелачивания продуктов переработки, гидроочистке бензиновых фракций, «отравлению» катализаторов. А вот увеличение содержания светлых фракций, приводящее к снижению затрат при производстве топлив, повышает качество нефти. Концентрация хлористых солей отражает загрязнение нефти при разработке залежи, в процессе добычи.
В [6] определен комплексный показатель качества К для оценки товарной нефти. Поскольку нет аналогичного комплексного критерия для определения качества нефтей в залежах разных месторождений и нефтегазоносных провинций (НГП), в работе предпринята попытка использовать показатель К. При этом технологический показатель С принимается равным 100 мг/л. Рассматриваемая в [6] методика определения комплексного показателя качества нефти K предполагает расчет по формуле:
К = 0,04S + 0,00054C + 1,74p – 0,0087Ф200 – 0,0056Ф300 – 0,0049Ф350 , (1)
где:
S – содержание общей серы в нефти (%),
С – концентрация хлористых солей (мг/л),
p – плотность нефти (г/см3),