Дипломная работа: Информационные технологии как средство формирования пространственного воображения школьников при
Базисными для пространственного воображения являются основные подструктуры: топологическая, проективная, порядковая, метрическая и алгебраическая. С помощью первой из указанных подструктур - топологической - человек выделяет и оперирует такими гомеоморфными пространственными характеристиками, как непрерывность, компактность, связность, замкнутость образа. Проективная подструктура детерминирована феноменом толерантности (отношения сходства) и позволяет индивиду распознавать, представлять, оперировать и ориентироваться среди пространственных объектов или их графических изображений с любой точки отсчета; устанавливать сходство (соответствие) между пространственным объектом и его различными проекциями (параллельной, ортогональной, центральной) и т.д. При этом принципиальным является умение устанавливать соответствие не между различными проекциями одного объекта, а между объектом и его проекциями. Опираясь на порядковую подструктуру пространственного воображения, человеку удается вычленять свойства квазипорядка, линейного или частичного упорядочивания множества различных пространственных объектов, устанавливать отношения иерархии по различным основаниям: ближе - дальше, больше - меньше, ниже - выше, направо - налево и т.д. Метрическая подструктура акцентирует внимание на количественных преобразованиях и позволяет определять числовые значения и величины длин, углов, расстояний. Наконец, с помощью алгебраической подструктуры удается соблюдать законы композиции, устанавливать обратимость пространственных преобразований, "свертывать" их, заменять несколько операций одной [10, 26, 27].
Наряду с этими пятью базисными феноменами пространственного воображения выделяются четыре уровня развития пространственного воображения.
Так, овладение окружающим пространством на ментальном уровне проявляется у ребенка старше трех лет в вычленении топологических характеристик объектов. Оно выражается в рисовании на бумаге, песке, реализации в движении "бесконечных" непрерывных связных линий. Одним из любимых занятий становится хождение по лабиринтам, которыми изобилует литература, адресованная дошкольнику. Здесь он с огромным удовольствием сначала графически, а затем и в воображении отыскивает непрерывный, компактный, связный путь движения.
Далее ребенок начинает дифференцировать окружающее пространство, не только отражая топологические характеристики (непрерывность, компактность, замкнутость и т.д.), но и вычленяя толерантность пространственных объектов, их изображений. Это проявляется в быстром и легком установлении соответствия между похожими предметами, сходными изображениями, предметами и их изображениями, выполненными в различных проекциях и ракурсах. Наличие этого умения свидетельствует о появлении у него проективной подструктуры [10, 25, 27].
Дифференциация пространственного воображения у различных индивидов определяется уровнем развития этого ментального процесса. Как оказалось, у людей с I уровнем развития в пространственном воображении существует лишь одна слаборазвитая подструктура, которую, тем не менее, можно считать доминирующей уже в силу того, что остальные отсутствуют. Это проявляется в том, что в окружающей реальной или воображаемой ситуации они не замечают или с большим трудом вычленяют и отделяют одни свойства и отношения объектов (например, топологические) от других (например, метрических) даже при явной необходимости этого.
II уровень характеризуется тем, что в пространственном воображении наряду с доминирующей существуют и другие (может быть, и все) подструктуры, но выражены они все еще слабо.
Более высоким является III уровень развития данного вида воображения, когда сформированы все подструктуры, но у каждого человека имеется наиболее ярко выраженная - ведущая, которая единственно устойчива и индивидуальна. Характерной чертой внешнего поведения этих индивидов является их постоянное стремление к дифференциации и вычленению в реальной или воображаемой ситуации и у объектов, прежде всего тех свойств и отношений, которые соответствуют своей ведущей подструктуре. Вместе с тем эти испытуемые способны вычленять и оперировать и иными отношениями (топологическими, порядковыми и т.д.), но это происходит лишь при явном требовании [10, 27].
Например, при описании своей комнаты испытуемые с I уровнем развития пространственного воображения хаотично фиксируют имеющиеся в ней предметы. А на вопрос "Как пройти к определенному объекту?" - бессистемно называют некоторые (и релевантные, и нерелевантные) ориентиры. Создать по их рассказу представление о комнате или пути движения очень сложно. Испытуемые со II уровнем проводят описание в рамках одной своей ведущей подструктуры. В случае метрического кластера оно звучит примерно так: "Комната 26м2 , в ней четыре окна, две кровати, одна тумбочка", или "Пройдете по этой улице 200м до колонки, затем еще метров 45 и увидите примерно в полукилометре белое здание с тремя огромными витринами". Испытуемые с III уровнем развития пространственного воображения по требованию могут последовательно описать предметы в комнате или объекты, встречающиеся по пути, указать порядок расположения или движения ("над кроватью", "повернете налево"), проецировать ситуацию с различных точек отсчета - от себя, от объекта, от экспериментатора ("если смотреть от двери", "прямо от вас"). Однако при этом явно доминируют отношения, гомоморфные ведущей подструктуре. В случае метрики - числа и величины в метрах, углах, единицах времени: "Минут через 10 Ваша дорожка повернет примерно на 30°, и в ста метрах будет вокзал", или "Повернете направо, затем налево и резко направо" - при ведущей порядковой подструктуре, и т.д.
Достижением III уровня развития пространственного воображения процесс дифференциации пространственного мышления не заканчивается. Далее он идет в рамках отдельных подструктур, определяя тем самым уровень их развития, что непосредственно влияет и на формирование этого ментального процесса в целом. Например, конкретное оперирование пространственными образами (выполнение мысленных поворотов, симметричных отображений и т.д.) может осуществляться различным образом, по разным типам.
1.3 Особенности использования информационных технологий при изучении стереометрии
Применение компьютерных технологий в преподавании математики волнует сейчас многих учителей. Несмотря на разворачивающийся в последние годы “компьютерный бум”, перед нами открываются как перспективы при применении компьютерных технологий, так и трудности связанные с этим вопросом. Трудности, связанные с техническим обеспечением, методическим оснащением, а так же с делением класса на группы, так как классы состоят из 25-30 человек, а в компьютерных классах в основном размещено 12-13 компьютеров. Для этого необходимо удобное расписание, что не всегда возможно. Необходимы обученные учительские кадры, которые свободно владеют общими навыками работы за компьютером.
Рассмотрим пять основных дидактических функций компьютера в преподавании математики [7].
1. Выполнение упражнений, когда учащимся предлагаются ранжированные по трудности задания.
2. Электронная доска, использование мультимедиа – проектора на уроках математики.
3. Моделирование.
4. Исследование, когда из числа предлагаемых вариантов ученик выбирает, аргументируя, собственное решение.
5. Математические расчеты в курсах других дисциплин.
Конечно, выполнение всех этих функций предполагает большой труд, как учителей, так и инженеров-программистов.
Ученые говорят об «информационных технологиях» как об инструментарии «информатики». Рассмотрим что такое информатика и информационные технологии.
Информатика – наука, изучающая информацию, информационные процессы в природе, обществе, технике, формализацию и моделирование как методы познания, способы представления, накопления, обработки и передачи информации с помощью технических средств – компьютеров и многое другое [49, 52].
Информационные технологии – это совокупность методов, устройств и производственных процессов, используемых обществом для сбора, хранения обработки и распространения информации [48, 52].
Часто информационные технологии называют компьютерными технологиями или прикладной математикой. Фундаментальная наука информатика связана с математикой – через теорию математического моделирования, дискретную математику, математическую логику и теорию алгоритмов. Наряду с фундаментальными науками существуют прикладные науки: вычислительная математика, технология, прикладная математика и пр. Обучающие программы реализуют одно из наиболее перспективных применений новых информационных технологий в преподавании и изучении предмета «Математика», позволяют давать такие наиважнейшие понятия курса математики на более высоком уровне, обеспечивающем качественные преимущества по сравнению с традиционными методами.
Использование компьютера на уроках математики способствует активной деятельности учащихся. Внутренняя формализованность работы компьютера, строгость в соблюдении “правил игры” с принципиальной познаваемостью этих правил способствует большей осознанности учебного процесса, повышают его интеллектуальный и логический уровень. Компьютер является как помощником, так и контролером на стадии тренировочных упражнений. Огромное разнообразие ролей компьютера в учебном процессе в своей основе является сочетанием трех главных функций: компьютер как орудие, компьютер как партнер, компьютер как источник формирования обстановки. Он помогает в значительной степени учителю при проведении урока, делая его отношения с учениками более человечными [49].
Во-первых, компьютер замыкает на себя большую часть контрольных функций и реакций на ошибки ученика. Ошибки, беспощадно фиксируемые компьютером, оказываются в значительной степени частным делом школьника. Учитель освобождается от необходимости выявлять сл?