Дипломная работа: Инновационный путь развития технологии создания новых лекарственных средств

На рисунке 3 изображены последовательные стадии вычислений методом классических траекторий. Реализация подобной схемы на современных компьютерах позволяет вычислять константы скорости реакций с существенно большим числом атомов, нежели при полностью квантовом описании [5,6].

Рисунок 3 – Схема расчетов констант скоростей химических реакций методом классических теорий

1.3 Определение биологической активности по модели

Для методов определения биологической активности вводится понятие о дескрипторах и QSAR. Молекулярный дескриптор – это числовые значения, характеризующие свойства молекул. Например, они могут представлять физико-химические свойства. Многие различные молекулярные дескрипторы описаны и применяются для различных целей. Они различаются по сложности, закодированной в них информации и сложности расчетов. Увеличение потребности в вычислительной технике увеличивается со сложностью расчетов.

Например, молекулярная масса имеет малое значение среди химических свойств, но зато быстро вычисляется. Дескрипторы основанные на квантово-химических расчетах имеют более важное значение для получения информации о химических свойств, но очень длительны по времени. Дескриптор может быть рассчитан из двухмерной и трехмерной модели химической структуры. Полученные дескрипторы обрабатываются и объединяются. Особое внимание заслуживают дескрипторы, которые описывают свойства молекул, а не замещают их. Такой вид дескрипторов является важной частью в разработке метода QSAR.

Большое распространение имеют математические и статистические модели. К таким моделям относятся модели методов QSAR(определяет количественные соотношения между структурой и активностью) и QSPR(определяет количественные соотношения между структурой и свойствами). Модель выполненная по методу QSAR должна быть разработана, как «эксперимент» и соответствовать точности реального эксперимента, для адекватного прогноза и для получения максимальной пользы от модели. В данном случае, чем больше первоначальных данных, тем точнее модель. Первым этапом является определение размера набора данных. Вторым этапом является корреляция дескрипторов. После определения набора данных и некоррелированных дескрипторов решается что именно должно быть включено в уравнения QSAR. Самый простой способ это использование автоматизированной процедуры. Полученные дескрипторы просчитываются через ряд уравнений и по полученным значениям определяют активность.

Последнее время одна из наиболее важных разработок с применением метода QSAR в области биологической активности связано с введением в CoMFA (ComparativeMolecularFieldAnalysis). Цель CoMFA заключается в связывании биологической активности с трехмерной формой молекулы, электростатическими характеристиками и водородными связями. Структура данных используемая в анализе CoMFA вытекает из ряда комформаций, по одной на каждую молекулу. По этим конформациям и просчитывают биологическую активность молекулы.

Просеивание с высокой пропускной способностью (HTS-метод). Сегодня HTS-метод (High Throughput Screening) повсеместно используется в фармацевтической индустрии для открытия новых лекарственных средств. С помощью высокоскоростной компьютеризованной технологии сотни тысяч веществ проверяются на активность относительно исследуемой молекулы, предназначенной для взаимодействия[8].

2. Применение компьютерного моделирования в современной практике

В США была разработана технология компьютерного моделирования новых химических веществ. Создано специализированное программное обеспечение и разработана обучающая литература по нему. Примером может служить книга Хинклифа «Моделирование молекулярных структур», выпущенная в 2000 году, в котором описаны методы расчетов и моделирования, используемые в HyperChem.

В России компьютерное моделирование находится на начальном этапе развития и его продвигают ученые-энтузиасты. Например, Николай Серафимович Зефиров — химик-органик; академик РАН. Зефиров внёс вклад в математическую химию, в решение проблемы описания органических структур и реакций; проблемы «структура-активность» (QSAR), проблемы поиска структуры, отвечающей заданному целевому свойству (QSPR); в компьютерное моделирование и компьютерный синтез. Занимался поиском новых реакций и реагентов, созданием методов синтеза целевых структур; соединений-лигандов глутаматных, мелатониновых и других рецепторов как потенциальных лекарств[9].

Достижения Зефирова в последние годы кратко можно сформулировать следующим образом:

1) развиты методы математической химии, на основе которых было осуществлено молекулярное моделирование строения и функционирования ряда важнейших рецепторов человека и компьютерный дизайн их потенциальных лигандов; получен патент на новый лекарственный препарат для лечения болезни Альцгеймера, принципиально отличающийся по принципу действия от всех описанных ранее препаратов;

2) проведенные молекулярно-динамические расчеты лиганд-рецепторных комплексов и свободных форм рецепторов позволили предсказать и объяснить агонистподобное расположение антагонистов в лиганд-связывающих центрах рецепторов, важное функциональное значение димеризации аминоконцевых доменов, возможность моделирования процессов закрытия и открытия аминоконцевого домена, а также предположить альтернативное объяснение функциональной роли агонистов, заключающееся в изменении конформаций боковых цепей аминокислотных остатков. С помощью метода молекулярного моделирования впервые построены полные пространственные модели серии рецепторов человека, что позволяет решать задачи конструирования и поиска лекарств по типу мишени (рецептора, на который данное лекарство действует);

3) созданы методы молекулярного докинга для исследования лиганд-белковых взаимодействий в белковых структурах, что позволяет осуществить предсказание связывания химических соединений с рецепторами на основании виртуального эксперимента. Выявлены соединения-лидеры с уникальным спектром нейропротекторных и когнитивно-стимулирующих свойств.

Зефиров заведуют лабораторией математической химии и компьютерного синтеза Института органической химии им. Зелинского РАН[10].

В КГМУ где ведется подготовка специалистов в области синтеза биологически активных веществ выпускающая кафедра биологической и химической технологии стала в ряды энтузиастов молекулярного моделирования. Далее приводятся примеры работ выполненные на кафедре биологической и химической технологии.


3. Примеры применения молекулярного моделирования

3.1 Определение механизма взаимодействия медиатора и рецептора с использованием молекулярного моделирования на примере ГАМК

Пытаясь объяснить роль ГАМК в нервной системе встречается одна из центральных проблем - выяснением механизма передачи импульсов в нервной системе. В ткани головного мозга содержатся химические вещества (медиаторы, передатчики), которые участвуют в создании контактов между нервными клетками осуществляют перенос импульса как в периферической, так и в центральной нервной системе. Решение этой центральной проблемы в настоящее время тесно связано с детальным изучением пространственного строения взаимодействующих медиаторов и рецепторов.

Взаимодействие ГАМК с нервной клеткой осуществляется когда нервный импульс достигает нервного окончания, он вызывает освобождение медиатора в синаптическую щель. ГАМК диффундирует через синаптическую щель (шириной 20—50 нм) и взаимодействует со специальными рецепторами в постсинаптической мембране. В результате такого взаимодействия изменяется мембранная проводимость для ионов, находящихся по обе стороны мембраны. Изменение проводимости связано со структурными изменениями мембраны и открытием в ней узких гидрофильных каналов для прохождения катионов или анионов и зависит от структурных особенностей ГАМК.

ГАМК имеет неплоскую структуру. ГАМК является гибкой цвиттер-ионной молекулой, которая может существовать в разных конформациях. Методами рентгеноструктурного анализа, изучением действия синтетических аналогов с жестко фиксированным строением и ряда природных агонистов и антагонистов ГАМК было надежно установлено, что наиболее предпочтительной для получения тормозящего эффекта является вытянутая конформация ГАМК (расстояние между заряженными атомами N+ и О- составляет в этом случае 5,4 ± 0,4 А; для свернутой конформации оно находится в пределах 3,9-4,2 А).

В кристаллах ГАМК находится полностью в вытянутой конформации. Однако в растворах ее молекулы, вероятно, существуют в различных конформациях. Прямое экспериментальное определение структуры ГАМК в момент ее взаимодействия с рецептором пока невозможно.

Для установления пространственного строения активной молекулы ГАМК и участка ее рецептора была изучена связь структуры с физиологической активностью некоторых аналогов ГАМК, имеющих в отличие от гибкой молекулы ГАМК жесткую структуру. Так, мусцимол, 4-аминотетрловая и 4-аминокротоновая кислоты имеют определенную конформацию благодаря наличию циклической структуры двойных и тройных связей. Различное действие мусцимола и других аналогов ГАМК, на спинные нейроны, а также структурные характеристики ряда ингибиторов захвата ГАМК показывают, что в процесс поглощения ГАМК нервными структурами и взаимодействия ее с постсинаптическими рецепторами она может иметь как вытянутую, так и свернутую конформацию.

Методами молекулярного моделирования были получены модели молекулы ГАМК и ГАМК-рецептора. Модель молекулы ГАМК была получена в программе HyperChemv6.0 методом оптимизации PM3. Пример модели молекулы ГАМК приведен на рисунке 4.

Рисунок 4 – Модели молекулы ГАМК. а) оптимизация молекул ГАМК в воде; б) вытянутая конформация; в) свернутая конформация.


Была выдвинута гипотеза, что взаимодействие молекулы ГАМК и рецептора обусловлено конформацией молекулы ГАМК. Положение ионов N+ и О- и расстояние между ними обуславливает образование комплекса между рецептором и медиатором. Образованный комплекс изменяет проводимость мембраны за счет образования пор.

Для проверки гипотезы была построена модель рецептора по аминокислотной последовательности, полученной из базы данных RCSB.PDB (ProteinDataBank), в специализированной программе DeepView – TheSwissPdbViewerv3.7. Построенная модель приведена на рисунке 5.

Рисунок 5 - Модель рецептора ГАМК.

Как видно из модели ГАМК-рецептора в центре есть канал для связывания с молекулами ГАМК. Размеры канала составляют 6,65 Ао , а размер комплекса из трех молекул вытянутой конформации ГАМК составляет 6,012 Ао , что позволяет предположить что взаимодействие происходит именно поэтому месту [11].

3.2 Определение биологической активности при помощи программы PASS

К-во Просмотров: 350
Бесплатно скачать Дипломная работа: Инновационный путь развития технологии создания новых лекарственных средств