Дипломная работа: Исполняемое Win32 приложение
Эта библиотека классов позволяет:
а) значительно сократить усилия по написанию программного кода приложений Windows;
б) уменьшить размер программного кода;
в) обрабатывать сообщения непосредственно методами класса без программирования цикла обработки сообщений;
г) выполнять непосредственный вызов любой функции Windows С;
д) легко преобразовывать Си-приложения в приложения на языке C++;
е) использовать все функции Windows API;
ж) легче адаптировать приложения к различным платформам, использовать как статически, так и динамически подключаемые библиотеки MFC;
з) значительно упростить применение таких возможностей, как элементы управления OLE, работа с базами данных, средства печати, управление наборами инструментария;
и) более эффективно использовать объектную ориентированность языка C++.
Рисунок 2.1 – Иерархия классов в библиотеке MFC
Следует отметить, что MFC инкапсулирует функции API в форме C++. Эта библиотека классов позволяет работать в терминах различных элементов Windows, таких, как окна, диалоги, элементы управления, а также в терминах графического интерфейса: контекст устройства, кисть и перо. Библиотека MFC создана как иерархический набор классов, позволяющих реализовывать Windows-приложения различных типов: диалоги, приложения с SDI или MDI интерфейсом, приложения, поддерживающие работу с базами данных, OLE-приложения. Базовым классом большинства классов библиотеки является класс CObject. В этом классе инкапсулированы общие методы работы с объектами: использование дампа объектов класса при отладке приложения, доступ к информации о классе объекта времени выполнения, сохранение и восстановление объектов класса. Большую часть библиотеки составляют классы, наследуемые от CObject и реализующие архитектуру приложения (рисунок 2.1)[1]: CWinThread, CWinApp, CDoc-Template, CDocument, CFrameWnd, CView и др.
2.2 Нечеткая логика ‑ математические основы
Нечеткое множество ‑ это пара (A, m), где A ‑ имя нечеткого множества, например: БОЛЬШОЙ, МОЛОДОЙ, ОТРИЦАТЕЛЬНО МАЛЫЙ, а m ‑ функция m:X-->L, называемая функцией принадлежности и обозначаемая обычно греческой буквой m. Часто полагается L = [0,1], а в качестве X используется некоторое множество вещественных чисел. m(x) интерпретируется как степень принадлежности элемента x из X нечеткому множеству A.
Характеристикой нечеткого множества выступает функция принадлежности (Membership Function)[4]. Обозначим через MFc (x) – степень принадлежности к нечеткому множеству C, представляющей собой обобщение понятия характеристической функции обычного множества. Тогда нечетким множеством С называется множество упорядоченных пар вида C={MFc (x)/x}, MFc (x) [0,1]. Значение MFc (x)=0 означает отсутствие принадлежности к множеству, 1 – полную принадлежность.
Проиллюстрируем это на простом примере. Формализуем неточное определение 'горячий чай'. В качестве x (область рассуждений) будет выступать шкала температуры в градусах Цельсия. Очевидно, что она будет изменяется от 0 до 100 градусов. Нечеткое множество для понятия 'горячий чай' может выглядеть следующим образом:
C={0/0; 0/10; 0/20; 0,15/30; 0,30/40; 0,60/50; 0,80/60; 0,90/70; 1/80; 1/90; 1/100}.
Так, чай с температурой 60 С принадлежит к множеству 'Горячий' со степенью принадлежности 0,80. Для одного человека чай при температуре 60 С может оказаться горячим, для другого – не слишком горячим. Именно в этом и проявляется нечеткость задания соответствующего множества.
Для нечетких множеств, как и для обычных, определены основные логические операции[5]. Самыми основными, необходимыми для расчетов, являются пересечение и объединение.
Пересечение двух нечетких множеств (нечеткое "И"): AÈB: MFAB(x)=min(MFA(x), MFB(x)).
Объединение двух нечетких множеств (нечеткое "ИЛИ"): AÇB: MFAB(x)=max(MFA(x), MFB(x)).
В теории нечетких множеств разработан общий подход к выполнению операторов пересечения, объединения и дополнения, реализованный в так называемых треугольных нормах и конормах. Приведенные выше реализации операций пересечения и объединения – наиболее распространенные случаи t-нормы и t-конормы.
Для описания нечетких множеств вводятся понятия нечеткой и лингвистической переменных.[4]
Нечеткая переменная описывается набором (N,X,A), где N – это название переменной, X – универсальное множество (область рассуждений), A – нечеткое множество на X.
Значениями лингвистической переменной могут быть нечеткие переменные, т.е. лингвистическая переменная находится на более высоком уровне, чем нечеткая переменная. Каждая лингвистическая переменная состоит из:
- названия;
- множества своих значений, которое также называется базовым терм-множеством T. Элементы базового терм-множества представляют собой названия нечетких переменных;
- универсального множества X;
- синтаксического правила G, по которому генерируются новые термы с применением слов естественного или формального языка;